
AUTOSAR Blockset
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

AUTOSAR Blockset User's Guide
© COPYRIGHT 2019–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 2.1 (Release 2019b)
March 2020 Online only Revised for Version 2.2 (Release 2020a)
September 2020 Online only Revised for Version 2.3 (Release 2020b)
March 2021 Online only Revised for Version 2.4 (Release 2021a)
September 2021 Online only Revised for Version 2.5 (Release 2021b)
March 2022 Online only Revised for Version 2.6 (Release 2022a)
September 2022 Online only Revised for Version 3.0 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Overview of AUTOSAR Support
1

AUTOSAR Blockset Product Description . 1-2

AUTOSAR Standard . 1-3

Comparison of AUTOSAR Classic and Adaptive Platforms 1-5
Classic Platform . 1-5
Adaptive Platform . 1-7

AUTOSAR Software Components and Compositions 1-11

Workflows for AUTOSAR . 1-13
Simulink Originated (Bottom-Up) Workflow . 1-13
Round-Trip Workflow . 1-13

AUTOSAR Workflow Samples . 1-15

Develop AUTOSAR Software Component Model . 1-16
Prerequisites . 1-16
Example Model . 1-16
What You Will Learn . 1-16

Create Algorithmic Model Content That Represents AUTOSAR Software
Component Behavior . 1-18

Configure Elements of AUTOSAR Software Component for Simulink
Modeling Environment . 1-20

Set Up Initial Component Configuration . 1-20
Customize Component Configuration . 1-22
Configure AUTOSAR Software Component Elements from AUTOSAR

Standard Perspective . 1-22

Simulate AUTOSAR Software Component . 1-24

Optional: Generate AUTOSAR Software Component Code (Requires
Embedded Coder) . 1-25

Develop AUTOSAR Adaptive Software Component Model 1-28
Prerequisites . 1-28
Example Model . 1-28
What You Will Learn . 1-28

Create Algorithmic Model Content That Represents AUTOSAR Adaptive
Software Component Behavior . 1-30

iii

Contents

Configure Elements of AUTOSAR Adaptive Software Component for
Simulink Modeling Environment . 1-33

Set Up an Initial Component Configuration . 1-33
Customize Component Configuration . 1-34
Configure AUTOSAR Adaptive Software Component Elements from

AUTOSAR Standard Perspective . 1-35

Simulate AUTOSAR Adaptive Software Component 1-37

Optional: Generate AUTOSAR Adaptive Software Component Code
(Requires Embedded Coder) . 1-38

Develop AUTOSAR Software Architecture Model 1-41
Prerequisites . 1-41
Example Model . 1-41
What You Will Learn . 1-41

Create AUTOSAR Software Architecture Model . 1-42

Add AUTOSAR Compositions and Components and Link Component
Implementations . 1-44

Add Compositions and Components to Architecture Canvas 1-44
Define Component Behavior by Linking Implementation Models 1-45
Complete Architecture Model Top Level . 1-47

Simulate Components in AUTOSAR Architecture 1-49

Optional: Generate and Package Composition ARXML and Component
Code (Requires Embedded Coder) . 1-51

Modeling Patterns for AUTOSAR Components
2

Simulink Modeling Patterns for AUTOSAR . 2-2

Model AUTOSAR Software Components . 2-3
About AUTOSAR Software Components . 2-3
Implementation Considerations . 2-3
Rate-Based Components . 2-6
Function-Call Based Components . 2-8
Multi-Instance Components . 2-9
Startup, Reset, and Shutdown . 2-9

Modeling Patterns for AUTOSAR Runnables . 2-11

Model AUTOSAR Runnables Using Exported Functions 2-19

Model AUTOSAR Communication . 2-22
About AUTOSAR Communication . 2-22
Sender-Receiver Interface . 2-23
Queued Sender-Receiver Interface . 2-24
Client-Server Interface . 2-25

iv Contents

Mode-Switch Interface . 2-26
Nonvolatile Data Interface . 2-30
Parameter Interface . 2-30
Trigger Interface . 2-31

Model AUTOSAR Component Behavior . 2-32
AUTOSAR Elements for Modeling Component Behavior 2-32
Runnables . 2-32
Inter-Runnable Variables . 2-33
Included Data Type Sets . 2-33
System Constants . 2-34
Per-Instance Memory . 2-35
Static and Constant Memory . 2-35
Shared and Per-Instance Parameters . 2-36
Port Parameters . 2-36

Model AUTOSAR Variants . 2-38
Variants for Ports and Runnables . 2-38
Variants for Runnable Implementations . 2-39
Variants for Array Sizes . 2-39
Predefined Variants and System Constant Value Sets 2-40

Model AUTOSAR Nonvolatile Memory . 2-41
Implicit Access to AUTOSAR Nonvolatile Memory 2-41
Explicit Access to AUTOSAR Nonvolatile Memory 2-42

Model AUTOSAR Data Types . 2-44
About AUTOSAR Data Types . 2-44
Enumerated Data Types . 2-45
Structure Parameters . 2-46
Data Types . 2-46
CompuMethod Categories for Data Types . 2-49

Model AUTOSAR Calibration Parameters and Lookup Tables 2-51
AUTOSAR Calibration Parameters . 2-51
Calibration Parameters for STD_AXIS, FIX_AXIS, and COM_AXIS Lookup

Tables . 2-51

AUTOSAR Component Creation
3

Create AUTOSAR Software Component in Simulink 3-2
Create Mapped AUTOSAR Component with Quick Start 3-2
Create Mapped AUTOSAR Component with Simulink Start Page 3-5

Create and Configure AUTOSAR Software Component 3-8

Import AUTOSAR XML Descriptions Into Simulink 3-13
Create ARXML Importer Object . 3-14
Import Software Component and Create Model 3-14
Import Software Composition and Create Models 3-15
Import Component or Composition External Updates Into Model 3-16

v

Import Shared Element Packages into Component Model 3-16

Import AUTOSAR Software Component with Multiple Runnables 3-18

Import AUTOSAR Component to Simulink . 3-19

Import AUTOSAR Software Composition with Atomic Software
Components (Classic Platform) . 3-24

Import AUTOSAR Software Component Updates 3-25
Update Model with AUTOSAR Software Component Changes 3-25
AUTOSAR Update Report Section Examples . 3-26

Import and Reference Shared AUTOSAR Element Definitions 3-29

Import AUTOSAR Package into Component Model 3-31

AUTOSAR ARXML Importer . 3-35

Round-Trip Preservation of AUTOSAR XML File Structure and Element
Information . 3-37

Limitations and Tips . 3-39
Cannot Save Importer Objects in MAT-Files . 3-39
ApplicationRecordDataType and ImplementationDataType Element Names

Must Match . 3-39

AUTOSAR Component Development
4

AUTOSAR Component Configuration . 4-3

Configure AUTOSAR Elements and Properties . 4-8
AUTOSAR Elements Configuration Workflow . 4-8
Configure AUTOSAR Atomic Software Components 4-9
Configure AUTOSAR Ports . 4-12
Configure AUTOSAR Runnables . 4-21
Configure AUTOSAR Inter-Runnable Variables . 4-25
Configure AUTOSAR Parameters . 4-26
Configure AUTOSAR Communication Interfaces 4-27
Configure AUTOSAR Computation Methods . 4-40
Configure AUTOSAR SwAddrMethods . 4-42
Configure AUTOSAR XML Options . 4-43

Map AUTOSAR Elements for Code Generation . 4-50
Simulink to AUTOSAR Mapping Workflow . 4-50
Map Entry-Point Functions to AUTOSAR Runnables 4-52
Map Inports and Outports to AUTOSAR Sender-Receiver Ports and Data

Elements . 4-53
Map Model Workspace Parameters to AUTOSAR Component Parameters

. 4-54
Map Data Stores to AUTOSAR Variables . 4-56

vi Contents

Map Block Signals and States to AUTOSAR Variables 4-58
Map Data Transfers to AUTOSAR Inter-Runnable Variables 4-60
Map Function Callers to AUTOSAR Client-Server Ports and Operations . 4-61
Specify C Type Qualifiers for AUTOSAR Static and Constant Memory . . . 4-61
Specify Default Data Packaging for AUTOSAR Internal Variables 4-62

Map Calibration Data for Submodels Referenced from AUTOSAR
Component Models . 4-65

Submodel Data Mapping Workflow . 4-65
Map Submodel Parameters to AUTOSAR Component Parameters 4-68
Map Submodel Data Stores to AUTOSAR Variables 4-69
Map Submodel Signals and States to AUTOSAR Variables 4-70
Generate Submodel Data Macros for Verification and Deployment 4-73

Incrementally Update AUTOSAR Mapping After Model Changes 4-74

Design and Simulate AUTOSAR Components and Generate Code 4-77

Configure AUTOSAR Packages . 4-84
AR-PACKAGE Structure . 4-84
Configure AUTOSAR Packages and Paths . 4-86
Control AUTOSAR Elements Affected by Package Path Modifications . . . 4-88
Export AUTOSAR Packages . 4-89
AR-PACKAGE Location in Exported ARXML Files 4-90

Configure AUTOSAR Package for Component, Interface, CompuMethod,
or SwAddrMethod . 4-93

Configure AUTOSAR Sender-Receiver Communication 4-95
Configure AUTOSAR Sender-Receiver Interface 4-95
Configure AUTOSAR Provide-Require Port . 4-96
Configure AUTOSAR Receiver Port for IsUpdated Service 4-98
Configure AUTOSAR Sender-Receiver Data Invalidation 4-99
Configure AUTOSAR S-R Interface Port for End-To-End Protection 4-102
Configure AUTOSAR Receiver Port for DataReceiveErrorEvent 4-105
Configure AUTOSAR Sender-Receiver Port ComSpecs 4-107

Configure AUTOSAR Queued Sender-Receiver Communication 4-111
Simulink Workflow for Modeling AUTOSAR Queued Send and Receive 4-112
Configure AUTOSAR Sender and Receiver Components for Queued

Communication . 4-113
Implement AUTOSAR Queued Send and Receive Messaging 4-115
Configure Simulation of AUTOSAR Queued Sender-Receiver Communication

. 4-118
Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication . . 4-119
Simulate Event-Driven AUTOSAR Queued Sender-Receiver Communication

. 4-121
Implement AUTOSAR Queued Send and Receive By Using Stateflow

Messaging . 4-125

Configure AUTOSAR Ports By Using Simulink Bus Ports 4-137
Model AUTOSAR Ports By Configuring Simulink Bus Ports 4-137
Model AUTOSAR Interfaces By Typing Bus Ports with Bus Objects 4-139

vii

Configure AUTOSAR Client-Server Communication 4-142
Configure AUTOSAR Server . 4-142
Configure AUTOSAR Client . 4-150
Configure AUTOSAR Client-Server Error Handling 4-156
Concurrency Constraints for AUTOSAR Server Runnables 4-159
Configure and Map AUTOSAR Server and Client Programmatically . . . 4-161

Configure AUTOSAR Mode-Switch Communication 4-162
Configure Mode Receiver Port and Mode-Switch Event for Mode User . 4-162
Configure Mode Sender Port and Mode Switch Point for Application Mode

Manager . 4-166

Configure AUTOSAR Nonvolatile Data Communication 4-169

Configure AUTOSAR Port Parameters for Communication with Parameter
Component . 4-171

Configure Receiver for AUTOSAR External Trigger Event Communication
. 4-175

Configure AUTOSAR Runnables and Events . 4-178

Configure AUTOSAR Runnable Execution Order 4-181

Configure AUTOSAR Initialize, Reset, or Terminate Runnables 4-187

Add Top-Level Asynchronous Trigger to Periodic Rate-Based System . 4-193

Configure AUTOSAR Initialization Runnable (R4.1) 4-196

Configure Disabled Mode for AUTOSAR Runnable Event 4-198

Configure Internal Data Types for AUTOSAR IncludedDataTypeSets . . 4-199

Configure AUTOSAR Per-Instance Memory . 4-201
Configure Block Signals and States as AUTOSAR Typed Per-Instance

Memory . 4-201
Configure Data Stores as AUTOSAR Typed Per-Instance Memory 4-202
Configure Data Stores to Preserve State Information at Startup and

Shutdown . 4-204

Configure AUTOSAR Static Memory . 4-206
Configure Block Signals and States as AUTOSAR Static Memory 4-206
Configure Data Stores as AUTOSAR Static Memory 4-207

Configure AUTOSAR Constant Memory . 4-210

Configure AUTOSAR Shared or Per-Instance Parameters 4-212
Configure Model Workspace Parameters as AUTOSAR Shared Parameters

. 4-212
Configure Model Workspace Parameters as AUTOSAR Per-Instance

Parameters . 4-213

Configure Variants for AUTOSAR Ports and Runnables 4-217

viii Contents

Configure Variants for AUTOSAR Runnable Implementations 4-220

Export Variation Points for AUTOSAR Calibration Data 4-223

Configure Dimension Variants for AUTOSAR Array Sizes 4-225

Control AUTOSAR Variants with Predefined Value Combinations 4-227

Configure Postbuild Variant Conditions for AUTOSAR Software
Components . 4-229

Configure Variant Parameter Values for AUTOSAR Elements 4-232
Specify Variant Parameters at Precompile Time 4-232
Specify Variant Parameters at Postbuild Time . 4-233

Configure AUTOSAR CompuMethods . 4-236
Configure AUTOSAR CompuMethod Properties 4-236
Create AUTOSAR CompuMethods . 4-237
Configure CompuMethod Direction for Linear Functions 4-238
Export CompuMethod Unit References . 4-239
Modify Linear Scaling for SCALE_LINEAR_AND_TEXTTABLE

CompuMethod . 4-240
Configure Rational Function CompuMethod for Dual-Scaled Parameter 4-241

Configure AUTOSAR Data Types Export . 4-244
Control Application Data Type Generation . 4-244
Configure DataTypeMappingSet Package and Name 4-245
Initialize Data with ApplicationValueSpecification 4-246
Configure AUTOSAR Internal Data Constraints Export 4-246

Automatic AUTOSAR Data Type Generation . 4-249

Configure Parameters and Signals for AUTOSAR Calibration and
Measurement . 4-251

Configure Subcomponent Data for AUTOSAR Calibration and
Measurement . 4-256

Configure AUTOSAR Data for Calibration and Measurement 4-263
About Software Data Definition Properties (SwDataDefProps) 4-263
Configure SwCalibrationAccess . 4-263
Configure DisplayFormat . 4-265
Configure SwAddrMethod . 4-268
Configure SwAlignment . 4-272
Export SwImplPolicy . 4-272
Export SwRecordLayout for Lookup Table Data 4-272

Configure Lookup Tables for AUTOSAR Calibration and Measurement
. 4-274
Configure STD_AXIS Lookup Tables by Using Lookup Table Objects . . . 4-274
Configure COM_AXIS Lookup Tables by Using Lookup Table and Breakpoint

Objects . 4-278
Configure FIX_AXIS Lookup Tables by Using Simulink Parameter Objects

. 4-283
Configure Array Layout for Multidimensional Lookup Tables 4-286

ix

Parameterizing Instances of Reusable Referenced Model Lookup Tables and
Breakpoints . 4-287

Exporting Lookup Table Constants as Record Value Specification 4-290
Exporting AdminData Record Layout Annotations 4-292

Configure and Map AUTOSAR Component Programmatically 4-294
AUTOSAR Property and Map Functions . 4-294
Tree View of AUTOSAR Configuration . 4-294
Properties of AUTOSAR Elements . 4-296
Specify AUTOSAR Element Location . 4-298

AUTOSAR Property and Map Function Examples 4-300
Configure AUTOSAR Software Component . 4-301
Configure AUTOSAR Interfaces . 4-310
Configure AUTOSAR XML Export . 4-316

Limitations and Tips . 4-318
AUTOSAR Client Block in Referenced Model . 4-318

AUTOSAR Code Generation
5

Generate AUTOSAR C Code and XML Descriptions 5-2

Configure AUTOSAR Code Generation . 5-7
Select AUTOSAR Classic Schema . 5-7
Specify Maximum SHORT-NAME Length . 5-8
Configure AUTOSAR Compiler Abstraction Macros 5-8
Root-Level Matrix I/O . 5-9
Inspect AUTOSAR XML Options . 5-9
Generate AUTOSAR C and XML Files . 5-9

Code Generation with AUTOSAR Code Replacement Library 5-13
Code Replacement Library for AUTOSAR Code Generation 5-13
Find Supported AUTOSAR Library Routines . 5-13
Configure Code Generator to Use AUTOSAR 4.0 Code Replacement Library

. 5-14
AUTOSAR 4.0 Library Host Code Verification . 5-14
Code Replacement Library Checks . 5-15
AUTOSAR Code Replacement Library Example for IFX/IFL Function

Replacement . 5-15
Required Algorithm Property Settings for IFL/IFX Function and Block

Mappings . 5-16

Verify AUTOSAR C Code with SIL and PIL . 5-30

Integrate Generated Code for Multi-Instance Software Components . . . 5-32

Import and Simulate AUTOSAR Code from Previous Releases 5-33

Limitations and Tips . 5-34
Generate Code Only Check Box . 5-34

x Contents

AUTOSAR Compiler Abstraction Macros (Classic Platform) 5-34
Preservation of Bus Element Dimensions in Exported ARXML and Code

. 5-34
C++11 Style Scoped Enum Classes Generated for AUTOSAR Adaptive

Applications . 5-34

AUTOSAR Adaptive Software Component Modeling
6

Model AUTOSAR Adaptive Software Components 6-2

Create and Configure AUTOSAR Adaptive Software Component 6-6

Import AUTOSAR Adaptive Software Descriptions 6-12

Import AUTOSAR Adaptive Components to Simulink 6-13

Import AUTOSAR Package into Adaptive Component Model 6-17

Configure AUTOSAR Adaptive Elements and Properties 6-21
AUTOSAR Elements Configuration Workflow . 6-21
Configure AUTOSAR Adaptive Software Components 6-22
Configure AUTOSAR Adaptive Service Interfaces and Ports 6-25
Configure AUTOSAR Adaptive Persistent Memory Interfaces and Ports . . 6-30
Configure AUTOSAR Adaptive XML Options . 6-33

Map AUTOSAR Adaptive Elements for Code Generation 6-37
Simulink to AUTOSAR Mapping Workflow . 6-37
Map Inports and Outports to AUTOSAR Service Ports and Events 6-39
Map Data Stores to AUTOSAR Persistent Memory Ports and Data Elements

. 6-39

Configure AUTOSAR Adaptive Software Components 6-41

Model AUTOSAR Adaptive Service Communication 6-50
Model Client-Server Communication . 6-53

Configure Memory Allocation for AUTOSAR Adaptive Service Data 6-60

Configure AUTOSAR Adaptive Service Discovery Modes 6-62

Configure AUTOSAR Adaptive Service Instance Identification 6-64

Model AUTOSAR Adaptive Persistent Memory . 6-66

Generate AUTOSAR Adaptive C++ Code and XML Descriptions 6-68

Configure AUTOSAR Adaptive Code Generation . 6-73
Select AUTOSAR Adaptive Schema . 6-73
Specify Maximum SHORT-NAME Length . 6-74
Specify XCP Slave Transport Layer . 6-74

xi

Specify XCP Slave IP Address . 6-74
Specify XCP Slave Port . 6-75
Enable XCP Slave Message Verbosity . 6-75
Use Custom XCP Slave . 6-75
Inspect AUTOSAR Adaptive XML Options . 6-76
Customize Class Name and Namespace in Generated Code 6-76
Configure Run-Time Logging Behavior . 6-76
Generate AUTOSAR Adaptive C++ and XML Files 6-77

Configure AUTOSAR Adaptive Data for Run-Time Calibration and
Measurement . 6-80
Configure XCP Communication Interface in Generated Code 6-80

Build Library or Executable from AUTOSAR Adaptive Model 6-82

Build Out of the Box Linux Executable from AUTOSAR Adaptive Model
. 6-85

Configure Run-Time Logging for AUTOSAR Adaptive Executables 6-88
Logging to Console . 6-88
Logging to File . 6-89
Logging to Network . 6-89

AUTOSAR Composition and ECU Software Simulation
7

Import AUTOSAR Composition to Simulink . 7-2

Combine and Simulate AUTOSAR Software Components 7-7
Import AUTOSAR Composition as Model (Classic Platform) 7-7
Create Composition Model for Simulating AUTOSAR Components 7-8
Alternatives for AUTOSAR System-Level Simulation 7-9

Model AUTOSAR Basic Software Service Calls . 7-12

Configure Calls to AUTOSAR Diagnostic Event Manager Service 7-14

Configure Calls to AUTOSAR Function Inhibition Manager Service 7-18
Model Function Inhibition . 7-18
Scope Failures to Operation Cycles . 7-23
Control Function Availability During Failure or For Testing 7-23
Configure Service Calls for Function Inhibition . 7-24

Configure Calls to AUTOSAR NVRAM Manager Service 7-28

Configure AUTOSAR Basic Software Service Implementations for
Simulation . 7-33

Simulate AUTOSAR Basic Software Services and Run-Time Environment
. 7-36

Configure and Simulate AUTOSAR Function Inhibition Service Calls . . 7-49

xii Contents

Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic
Fault Injection . 7-53

AUTOSAR Software Architecture Modeling
8

Create AUTOSAR Architecture Models . 8-2

Add and Connect AUTOSAR Compositions and Components 8-4
Add and Connect Component Blocks . 8-4
Add and Connect Composition Blocks . 8-6

Import AUTOSAR Composition from ARXML . 8-10
Import AUTOSAR Composition By Using AUTOSAR Importer App 8-10
Import AUTOSAR Composition By Calling importFromARXML 8-12

Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis
. 8-14

Create Profiles and Stereotypes . 8-14
View Component or Composition Dependencies 8-14
Create Custom Views for Analysis . 8-16

Link AUTOSAR Components to Simulink Requirements 8-19

Define AUTOSAR Component Behavior by Creating or Linking Models
. 8-21

Create Model Based on Block Interface . 8-21
Link to Implementation Model . 8-23
Create Model from ARXML Component Description 8-26

Configure AUTOSAR Scheduling and Simulation 8-31
Simulate Basic Software Service Calls . 8-31
Connect a Test Harness . 8-31
Schedule Component Runnables . 8-33

Generate and Package AUTOSAR Composition XML Descriptions and
Component Code . 8-36
Configure Composition XML Options . 8-36
Export Composition XML and Component Code 8-38
Export Composition ECU Extract . 8-40

Author AUTOSAR Compositions and Components in Architecture Model
. 8-42

Import AUTOSAR Composition into Architecture Model 8-55

Configure AUTOSAR Architecture Model Programmatically 8-59

Manage Shared Interfaces and Data Types for AUTOSAR Architecture
Models . 8-62

Create Interface Dictionary . 8-62
Design Data Types and Interfaces by Using Interface Dictionary 8-63

xiii

Link Interface Dictionary to Architecture Model 8-66
Apply Interfaces to Architecture Model in Simulink Environment 8-69
Deploy Interface Dictionary . 8-70
Limitations . 8-71

xiv Contents

Overview of AUTOSAR Support

• “AUTOSAR Blockset Product Description” on page 1-2
• “AUTOSAR Standard” on page 1-3
• “Comparison of AUTOSAR Classic and Adaptive Platforms” on page 1-5
• “AUTOSAR Software Components and Compositions” on page 1-11
• “Workflows for AUTOSAR” on page 1-13
• “AUTOSAR Workflow Samples” on page 1-15
• “Develop AUTOSAR Software Component Model” on page 1-16
• “Create Algorithmic Model Content That Represents AUTOSAR Software Component Behavior”

on page 1-18
• “Configure Elements of AUTOSAR Software Component for Simulink Modeling Environment”

on page 1-20
• “Simulate AUTOSAR Software Component” on page 1-24
• “Optional: Generate AUTOSAR Software Component Code (Requires Embedded Coder)”

on page 1-25
• “Develop AUTOSAR Adaptive Software Component Model” on page 1-28
• “Create Algorithmic Model Content That Represents AUTOSAR Adaptive Software Component

Behavior” on page 1-30
• “Configure Elements of AUTOSAR Adaptive Software Component for Simulink Modeling

Environment” on page 1-33
• “Simulate AUTOSAR Adaptive Software Component” on page 1-37
• “Optional: Generate AUTOSAR Adaptive Software Component Code (Requires Embedded Coder)”

on page 1-38
• “Develop AUTOSAR Software Architecture Model” on page 1-41
• “Create AUTOSAR Software Architecture Model” on page 1-42
• “Add AUTOSAR Compositions and Components and Link Component Implementations”

on page 1-44
• “Simulate Components in AUTOSAR Architecture” on page 1-49
• “Optional: Generate and Package Composition ARXML and Component Code (Requires Embedded

Coder)” on page 1-51

1

AUTOSAR Blockset Product Description
Design and simulate AUTOSAR software

AUTOSAR Blockset provides apps and blocks for developing AUTOSAR Classic and Adaptive software
using Simulink® models. You can design and map Simulink models to software components using the
AUTOSAR Component Designer app. Alternatively, the blockset lets you generate new Simulink
models for AUTOSAR by importing software component and composition descriptions from AUTOSAR
XML (ARXML) files.

AUTOSAR Blockset provides blocks and constructs for AUTOSAR library routines and Basic Software
(BSW) services, including NVRAM and Diagnostics. By simulating the BSW services together with
your application software model, you can verify your AUTOSAR ECU software without leaving
Simulink.

AUTOSAR Blockset lets you create AUTOSAR architecture models in Simulink (requires System
Composer™). In the AUTOSAR architecture model, you can author software compositions,
components with interfaces, data types, profiles, and stereotypes. You can add simulation behavior,
including BSW service components. Alternatively, you can round-trip (import and export) software
descriptions via ARXML files.

AUTOSAR Blockset supports C and C++ production code generation (with Embedded Coder®). It is
qualified for use with the ISO 26262 standard (with IEC Certification Kit).

1 Overview of AUTOSAR Support

1-2

AUTOSAR Standard

Simulink software supports AUTomotive Open System ARchitecture (AUTOSAR), an open and
standardized automotive software architecture consisting of three layers of software: Application,
Run-Time Environment (RTE), and Basic Software.

Automobile manufacturers, suppliers, and tool developers jointly develop components of the
Application layer. The standard refers to the components as AUTOSAR software components. They
interact with the Run-Time Environment layer. The Run-Time Environment layer enables
communication between:

• Components of the Application layer
• The Basic Software layer and components of the Application layer

The Basic Software layer provides shared common system services that components of the
Application layer use.

The AUTOSAR standard addresses:

• Architecture—A layered software architecture decouples application software from the execution
platform. Standard interfaces between AUTOSAR software components and the run-time
environment allow reuse or relocation of components within the Electronic Control Unit (ECU)
topology of a vehicle.

The standard defines variations of the software architecture called AUTOSAR platforms: Classic
Platform and Adaptive Platform. For more information, see “Comparison of AUTOSAR Classic and
Adaptive Platforms” on page 1-5.

 AUTOSAR Standard

1-3

• Methodology—Configuration description files define system information that ECUs share, system
information that is unique to specific ECUs, and basic software information specific to an ECU.

• Foundation—Requirements and specifications shared between AUTOSAR platforms that support
platform interoperability.

• Application Interfaces—Provide a standardized exchange format by specifying interfaces for
typical automotive applications and specifying interfaces between the layers of software.

See Also

More About
• https://www.autosar.org
• “Comparison of AUTOSAR Classic and Adaptive Platforms” on page 1-5
• “Modeling Patterns”
• “Workflows for AUTOSAR” on page 1-13
• https://www.mathworks.com/automotive/standards/autosar.html

1 Overview of AUTOSAR Support

1-4

https://www.autosar.org
https://www.mathworks.com/solutions/automotive/standards/autosar.html

Comparison of AUTOSAR Classic and Adaptive Platforms
The AUTOSAR standard defines variations of the software architecture called AUTOSAR platforms:
Classic Platform (CP) and Adaptive Platform (AP).

When you choose which platform to use for designing and implementing an AUTOSAR software
component, review the information in this table for guidance.

AUTOSAR Platform Comparison

Goal or Feature Classic Platform Adaptive Platform
Use cases Embedded systems High performance computing,

communication with external
resources, and flexible
deployment

Programming language C C++
Operating system Bareboard POSIX
Real-time requirements Hard Soft
Computing power Low High
Communication Signal-based Event-based, service-oriented
Safety and security Supported Supported
Dynamic updating Not available Incremental deployment and run-

time configuration changes
Level of standardization High—detailed specifications Low—APIs and semantics
Agile development No Yes

Classic Platform
The Classic Platform addresses requirements of deeply embedded electronic control units (ECUs)
that control electrical output signals based on input signals and information from other ECUs
connected to a vehicle network. Typically, you design and implement the control software for a
specific type of vehicle, which does not change during the lifetime of the vehicle.

The Run-Time Environment (RTE) layer of the software architecture handles communication between
AUTOSAR software components in the Application layer and between AUTOSAR software
components and services provided by the Basic Software layer. The Basic Software layer consists of:

• Services, such as system, memory, and communication services
• Device drivers
• ECU abstraction
• Microcontroller abstraction

 Comparison of AUTOSAR Classic and Adaptive Platforms

1-5

The Classic Platform uses a virtual functional bus (VFB) to support hardware-independent
development and usage of AUTOSAR application software. The bus consists of abstract
representations of RTEs for specific ECUs, decoupling AUTOSAR software components in the
Application layer of the architecture from the architecture infrastructure. AUTOSAR software
components and the bus communicate by using dedicated ports. You configure an application by
mapping component ports to the RTE representations of the system ECUs.

1 Overview of AUTOSAR Support

1-6

Adaptive Platform
The Adaptive Platform is a distributed computing and service-oriented architecture (SOA). The
platform provides high-performance computing, message-based communication mechanisms, and
flexible software configuration for supporting applications, such as automated driving and
infotainment systems. Software based on this platform can:

• Meet strict integrity and security requirements
• Address environment perception and behavioral response planning
• Integrate a vehicle into the back end or infrastructure of an external system
• Address changes to external systems because you can update the software during the lifetime of a

vehicle

The RTE layer of the software architecture includes the C++ standard library. It supports
communication between AUTOSAR software components in the Application layer and between
AUTOSAR software components and software provided by the Basic Software layer. The Basic
Software layer consists of system foundation software and services. AUTOSAR software components
in the Application layer communicate with each other, with nonplatform services, and with foundation

 Comparison of AUTOSAR Classic and Adaptive Platforms

1-7

software and services by responding to event-driven messages. Software components interact with
software in the Basic Software layer by using C++ application programming interfaces (APIs).

Foundation software includes the POSIX operating system and software for system management
tasks, such as:

• Execution management
• Communication management
• Time synchronization
• Identity access management
• Logging and tracing

Examples of services include:

• Update and configuration management
• Diagnostics
• Signal-to-service mapping
• Network management

ECU hardware on which a single instance of an Adaptive Platform application runs is a machine. A
machine might be one or more chips or a virtual hardware component. The hardware can be a single
chip that hosts one or more machines or multiple chips that host a single machine.

1 Overview of AUTOSAR Support

1-8

The Adaptive Platform supports hardware-independent development and usage of AUTOSAR
application software. Abstract representations of RTEs for specific ECUs (microcontrollers, high-
performance microcontrollers, and virtual machines) decouple AUTOSAR software components in the
Application layer of the architecture from the architecture infrastructure. AUTOSAR software
components and foundation software and services communicate by using dedicated ports. You
configure an application by mapping component ports to the RTE representations of the system
ECUs.

 Comparison of AUTOSAR Classic and Adaptive Platforms

1-9

See Also

More About
• https://www.autosar.org

1 Overview of AUTOSAR Support

1-10

https://www.autosar.org

AUTOSAR Software Components and Compositions
AUTOSAR software components are reusable building blocks of AUTOSAR software. An AUTOSAR
software component encapsulates one or more algorithms and communicates with its environment
through well-defined ports. For example, a throttle application might include AUTOSAR software
components that represent sensors for throttle and acceleration pedal sensors, a throttle position
monitor, a controller, and an actuator.

An AUTOSAR software component connects to an AUTOSAR runtime environment for communicating
with other software components and software in the Basic Software layer of the AUTOSAR software
architecture. You can reuse and relocate software components between ECUs.

In Simulink, you represent AUTOSAR software components with Simulink model components, such as
Model, subsystem, and Simulink Function blocks.

AUTOSAR compositions are AUTOSAR software components that aggregate groups of software
components that have related functionality. A composition is a system abstraction that facilitates
scalability and helps to manage complexity when designing the logical representation of a software
application.

This figure shows a composition for throttle position control.

The composition consists of software components that represent:

• Two throttle position sensors
• Throttle position monitor
• Acceleration pedal position sensor
• Controller
• Throttle position actuator

 AUTOSAR Software Components and Compositions

1-11

If you are using the AUTOSAR Classic Platform, you can model an AUTOSAR software composition by
importing an ARXML description of a composition into Simulink or by using an AUTOSAR
architecture model to author a software composition (requires System Composer).

See Also

More About
• https://www.autosar.org
• “Develop AUTOSAR Software Component Model” on page 1-16
• “Develop AUTOSAR Adaptive Software Component Model” on page 1-28
• “Model AUTOSAR Software Components” on page 2-3
• “Model AUTOSAR Adaptive Software Components” on page 6-2
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Import AUTOSAR Adaptive Software Descriptions” on page 6-12
• “Create AUTOSAR Software Component in Simulink” on page 3-2
• “Import AUTOSAR Composition to Simulink” on page 7-2
• “Import AUTOSAR Software Composition with Atomic Software Components (Classic Platform)”

on page 3-24
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42

1 Overview of AUTOSAR Support

1-12

https://www.autosar.org

Workflows for AUTOSAR
To develop AUTOSAR software components in Simulink, you create a Simulink representation of an
AUTOSAR software component. AUTOSAR component creation can start from an existing Simulink
design or from an AUTOSAR XML (ARXML) component description created in another development
environment.

In a Simulink originated (bottom-up) workflow, you take an existing Simulink design or algorithm and
map it into an AUTOSAR software component model.

In a round-trip workflow, you import an AUTOSAR component description created by an authoring
tool in another development environment. Importing the component specification into Simulink
creates an AUTOSAR software component model.

In this section...
“Simulink Originated (Bottom-Up) Workflow” on page 1-13
“Round-Trip Workflow” on page 1-13

Simulink Originated (Bottom-Up) Workflow
In a Simulink originated, or bottom-up, workflow, you take a design or algorithm that originated in
Simulink and configure it into an AUTOSAR software component model. To get started, use the
AUTOSAR Component Quick Start or AUTOSAR model templates on the Simulink Start Page. For
more information, see “Create AUTOSAR Software Component in Simulink” on page 3-2.

You develop the component design and behavior in Simulink. For example, you configure AUTOSAR
software component elements, map Simulink model elements to AUTOSAR software component
elements, develop component behavior algorithms, and simulate the component behavior.

Using Simulink Coder™ and Embedded Coder, you can generate AUTOSAR-compliant XML
descriptions and C or C++ code from the component model. You can test the code in Simulink or
integrate the descriptions and code in an AUTOSAR run-time environment.

Round-Trip Workflow
In a round-trip workflow, you import an AUTOSAR software component description created in another
development environment into Simulink. Simulink can import AUTOSAR-compliant XML descriptions
exported by common AUTOSAR authoring tools (AATs). Importing the XML description of an
AUTOSAR software component creates a Simulink model representation of the component. For more
information, see “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13 or “Import
AUTOSAR Adaptive Software Descriptions” on page 6-12.

As with a Simulink originated design, you develop the component design and behavior in Simulink.
For example, you configure AUTOSAR software component elements, map Simulink model elements
to AUTOSAR software component elements, develop component behavior algorithms, and simulate
the component behavior.

Using Simulink Coder and Embedded Coder, you can generate AUTOSAR-compliant XML descriptions
and C or C++ code from the component model for testing or integration.

In a round-trip workflow, you deliver the generated description files and code back to the originating
AAT. Using the AAT, merge your Simulink design work with other components and systems. If you

 Workflows for AUTOSAR

1-13

further modify the component in the other development environment, use the AAT to export updated
XML specifications. In your Simulink environment, import the new descriptions and update your
component model to reflect the changes. For more information, see “Import AUTOSAR Software
Component Updates” on page 3-25.

To support the round trip of AUTOSAR elements between an AAT and Simulink, ARXML import
preserves imported AUTOSAR XML file structure and content for ARXML export. For more
information, see “Round-Trip Preservation of AUTOSAR XML File Structure and Element
Information” on page 3-37.

See Also

Related Examples
• “Create AUTOSAR Software Component in Simulink” on page 3-2
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Import AUTOSAR Software Component Updates” on page 3-25
• “Import AUTOSAR Adaptive Software Descriptions” on page 6-12
• “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-

37

1 Overview of AUTOSAR Support

1-14

AUTOSAR Workflow Samples
Example How to ...
“Create and Configure AUTOSAR Software Component” on
page 3-8

Create an AUTOSAR software component model
from an algorithm model.

“Import AUTOSAR Component to Simulink” on page 3-19 Create Simulink model from XML description of
AUTOSAR software component.

“Design and Simulate AUTOSAR Components and Generate
Code” on page 4-77

Develop AUTOSAR components by implementing
behavior algorithms, simulating components and
compositions, and generating component code.

“Modeling Patterns for AUTOSAR Runnables” on page 2-
11

Use Simulink models, subsystems, and functions
to model AUTOSAR atomic software components
and their runnable entities (runnables).

“Create and Configure AUTOSAR Adaptive Software
Component” on page 6-6

Create an AUTOSAR adaptive software component
model from an algorithm model.

“Import AUTOSAR Adaptive Components to Simulink” on
page 6-13

Create Simulink models from XML descriptions of
AUTOSAR adaptive software components.

“Simulate AUTOSAR Basic Software Services and Run-
Time Environment” on page 7-36

Simulate AUTOSAR component calls to Basic
Software memory and diagnostic services using
reference implementations.

“Generate AUTOSAR C Code and XML Descriptions” on
page 5-2

With Embedded Coder software, generate
AUTOSAR-compliant C code and export AUTOSAR
XML (ARXML) descriptions from AUTOSAR
component model.

“Generate AUTOSAR Adaptive C++ Code and XML
Descriptions” on page 6-68

With Embedded Coder software, generate
AUTOSAR-compliant C++ code and export
AUTOSAR XML (ARXML) descriptions from
AUTOSAR adaptive component model.

“Author AUTOSAR Compositions and Components in
Architecture Model” on page 8-42

With System Composer software, use an
architecture model to develop AUTOSAR
compositions and components for the Classic
Platform.

“AUTOSAR Property and Map Function Examples” on page
4-300

Programmatically add AUTOSAR elements to a
model, configure AUTOSAR properties, and map
Simulink elements to AUTOSAR elements.

See Also

More About
• “Workflows for AUTOSAR” on page 1-13
• https://www.autosar.org

 AUTOSAR Workflow Samples

1-15

https://www.autosar.org

Develop AUTOSAR Software Component Model

Prerequisites
This tutorial assumes that you are familiar with the basics of the AUTOSAR standard and Simulink.
The code generation portion of this tutorial assumes that you have knowledge of Embedded Coder
basics.

To complete this tutorial, you must have:

• MATLAB®

• Simulink

An optional part of the tutorial requires Simulink Coder and Embedded Coder software.

Example Model
The tutorial uses example models swc and autosar_swc.

What You Will Learn
You will learn how to:

1 Create algorithmic model content that represents AUTOSAR software component behavior.
2 Configure elements of an AUTOSAR software component for the Simulink modeling environment.
3 Simulate the AUTOSAR software component.
4 Optionally, generate AUTOSAR software component code.

1 Overview of AUTOSAR Support

1-16

To start the tutorial, see “Create Algorithmic Model Content That Represents AUTOSAR Software
Component Behavior” on page 1-18.

 Develop AUTOSAR Software Component Model

1-17

Create Algorithmic Model Content That Represents AUTOSAR
Software Component Behavior

AUTOSAR Blockset software supports AUTOSAR software component modeling for the AUTOSAR
Classic Platform. To develop an AUTOSAR software component in Simulink, create a Simulink model
that represents the AUTOSAR software component. Initiate the model creation in one of these ways:

• Import an existing AUTOSAR XML (ARXML) component description into the Simulink environment
as a model. You import a component description by using the AUTOSAR ARXML importer.

• Rework an existing Simulink model into a representation of the AUTOSAR software component.
• Starting from an AUTOSAR Blockset model template, create a Simulink model.

After creating an initial model design, refine the algorithmic content.

This tutorial uses example model autosar_swc to show a sample model representation of an
AUTOSAR software component.

1 Open model autosar_swc.

2 Explore the model components. The model consists of:

• Periodic runnable Runnable_1s, which is configured with a sample rate of 1 second
(In1_1s).

• Periodic runnable Runnable 2s, which is configured with a sample rate of 2 seconds
(In2_2s).

• Initialize Function block, Runnable_Initialize, which initializes the integrator in
Runnable 2s to a value of 1.

3 Explore the model configuration.

1 Overview of AUTOSAR Support

1-18

Model configuration parameter System target file is set to autosar.tlc. That system target
file setting enables use of AUTOSAR Blockset software.

To maximize execution efficiency, the model is configured for multitasking mode. Solver settings
are:

• Type is set to Fixed-step.
• Solver is set to discrete (no continuous states).
• Fixed-step size (fundamental sample time) is set to auto.
• Treat each discrete rate as a separate task is selected.

In the Simulink Editor, you can enable sample time color-code by selecting the Debug tab and
selecting Diagnostics > Information Overlays > Colors. A sample time legend shows the
implicit rate grouping. Red represents the fastest discrete rate. Green represents the second
fastest discrete rate. Yellow represents a mixture of the two rates.

Because the model has multiple rates and the Solver parameter Treat each discrete rate as a
separate task is selected, the model simulates in multitasking mode. The model handles the rate
transition for In2_2s explicitly by using the Rate Transition block.

The Rate Transition block parameter Ensure deterministic data transfer is cleared to
facilitate integration into an AUTOSAR run-time environment.

Generated code for the model schedules subrates in the model. For this model, the rate for Inport
block In2_2s, the green rate, is a subrate. The generated code properly transfers data between
tasks that run at different rates.

Next, configure elements of the AUTOSAR software component for use in the Simulink modeling
environment.

See Also

Related Examples
• “Modeling Patterns”

 Create Algorithmic Model Content That Represents AUTOSAR Software Component Behavior

1-19

Configure Elements of AUTOSAR Software Component for
Simulink Modeling Environment

After you create a representation of the AUTOSAR software component in the Simulink Editor,
configure elements of the software component for use in Simulink. The configuration maps AUTOSAR
software component elements to Simulink modeling elements.

AUTOSAR Blockset software reduces the effort of setting up a configuration by providing an
AUTOSAR Component Quick Start tool. If necessary, you can modify the initial configuration by using
the Code Mappings editor and the AUTOSAR Dictionary.

Set Up Initial Component Configuration
Set up an initial configuration of an AUTOSAR software component by using the AUTOSAR
Component Quick Start tool.

1 Open example model swc, an unconfigured version of autosar_swc.
2 Save a copy of the example model to a writable folder on your current MATLAB search path.

Name the file my_autosar_swc.slx.
3 Set model configuration parameter System target file to autosar.tlc.
4 Run the AUTOSAR Component Quick Start tool. From the Apps tab, open the AUTOSAR

Component Designer app. When you open the app for an unmapped model that is configured with
an AUTOSAR system target file, the AUTOSAR Component Quick Start tool runs.

1 Overview of AUTOSAR Support

1-20

5 Advance through the steps of the AUTOSAR Component Quick Start tool. Each step prompts you
for input that the tool uses to configure your AUTOSAR software component for the Simulink
environment.

• The name, package, and type of the AUTOSAR software component that you are configuring.
• Whether you want to use default properties based on the model or import AUTOSAR software

component properties from an ARXML file.

For this tutorial, use the defaults.

After you click Finish, the tool:

• Creates a mapping between elements of the AUTOSAR software component and Simulink
model elements.

• Opens the model in the Simulink Editor AUTOSAR Code perspective. The AUTOSAR Code
perspective displays the model and directly below the model, the Code Mappings editor.

• Displays the AUTOSAR software component mappings in the Code Mappings editor, which
you can use to customize the configuration.

6 Save the model.

 Configure Elements of AUTOSAR Software Component for Simulink Modeling Environment

1-21

Customize Component Configuration
The AUTOSAR Component Quick Start tool sets up an initial configuration for an AUTOSAR software
component. To refine or make changes to an existing component configuration, use the Code
Mappings editor and the AUTOSAR Dictionary.

In a tabbed table format, the Code Mappings editor displays Simulink model elements, such as entry-
point functions, inports, outports, and data transfers. Use the editor to map Simulink model elements
to AUTOSAR software component elements. AUTOSAR software component elements are defined in
the AUTOSAR standard. They include runnable entities, ports, and inter-runnable variables (IRVs).

1 If not already open, open model my_autosar_swc.
2 In the Code Mappings editor, select the Inports tab.
3 Select model inport In1_1s. Selecting the inport highlights the corresponding element in the

model. The inport is mapped to AUTOSAR port In1_1s and data element In1_1s with data
access mode ImplicitReceive.

In each Code Mappings editor tab, you can select model elements and modify their AUTOSAR
mapping and attributes. Modifications are reflected in generated ARXML descriptions and C
code.

4 Modify attribute settings for a mapped model element. For this tutorial, modify communication

attributes for inport In1_1s. Click the icon and change:

• AliveTimeout from 0 to 30
• HandleNeverReceived from cleared to selected
• InitValue from 0 to 1

5 Save the model.

Configure AUTOSAR Software Component Elements from AUTOSAR
Standard Perspective
Configure AUTOSAR software component elements from the perspective of the AUTOSAR standard
by using the AUTOSAR Dictionary.

1 If not already open, open model my_autosar_swc.
2 Open the AUTOSAR Dictionary. In the Code Mappings editor, click the AUTOSAR Dictionary

button . The AUTOSAR Dictionary opens in the AUTOSAR view that corresponds to the
Simulink element that you last selected and mapped in the Code Mappings editor. If you selected

1 Overview of AUTOSAR Support

1-22

and mapped a Simulink inport, the dictionary opens in ReceiverPorts view and displays the
AUTOSAR port that you mapped the inport to.

In a tree format, the AUTOSAR Dictionary displays the mapped AUTOSAR software component
and its elements, communication interfaces, computation methods, software address methods,
and XML options.

3 Use the AUTOSAR Dictionary to further customize component configurations. In the
ReceiverPorts view, select port In1_1s, the AUTOSAR receiver port to which the Simulink inport
was mapped. An attributes panel appears, showing the attributes settings for that element.

4 In the AUTOSAR Dictionary, rename the AUTOSAR receiver port In1_1s to In1_1s_SS1. To
initiate the edit, double-click the Name value field.

The Code Mappings editor reflects the name change.

5 Save the model.

Next, simulate the AUTOSAR software component.

See Also

Related Examples
• “Create AUTOSAR Software Component in Simulink” on page 3-2
• “Map AUTOSAR Elements for Code Generation” on page 4-50
• “Configure AUTOSAR Elements and Properties” on page 4-8

 Configure Elements of AUTOSAR Software Component for Simulink Modeling Environment

1-23

Simulate AUTOSAR Software Component
After you configure the AUTOSAR software component model for use in the Simulink environment,
simulate model my_autosar_swc, which you configured in “Configure Elements of AUTOSAR
Software Component for Simulink Modeling Environment” on page 1-20.

1 If not already open, open your configured version of model my_autosar_swc.
2

In the Simulink Editor, click the Simulate button .

If you have access to Simulink Coder and Embedded Coder software, next, generate code for the
AUTOSAR model.

See Also

Related Examples
• “Update Diagram and Run Simulation”

1 Overview of AUTOSAR Support

1-24

Optional: Generate AUTOSAR Software Component Code
(Requires Embedded Coder)

If you have access to Simulink Coder and Embedded Coder software, you can build an AUTOSAR
model. When you build an AUTOSAR model, the code generator produces C code that complies with
the AUTOSAR standard and ARXML descriptions.

1 If not already open, open your configured version of model my_autosar_swc.
2 Initiate code generation by pressing Ctrl+B. The code generator produces C code and ARXML

files. The generated code complies with the AUTOSAR standard so that you can schedule the
code with the AUTOSAR run-time environment.

The code generator also produces and displays a code generation report.
3 In the code generation report, review the generated code. In your current MATLAB folder, the

my_autosar_swc_autosar_rtw folder contains the primary files listed in this table.

Generated Code Files

Files Description
my_autosar_swc.c Contains entry points for the code that

implements the model algorithm. This file
includes rate scheduling code.

my_autosar_swc.h Declares model data structures and a public
interface to the model entry points and data
structures.

rtwtypes.h Defines data types, structures, and macros
that the generated code requires.

my_autosar_swc_component.arxml
my_autosar_swc_datatype.arxml
my_autosar_swc_implementation.arxm
l
my_autosar_swc_interface.arxml

Contain elements and objects that represent
AUTOSAR software components, ports,
interfaces, data types, and packages. You
integrate ARXML files into an AUTOSAR run-
time environment. You can import ARXML
files into the Simulink environment by using
the AUTOSAR ARXML importer tool.

4 Open and review the Code Interface Report. This information is captured in the ARXML files. The
run-time environment generator uses the ARXML descriptions to interface the code into an
AUTOSAR run-time environment.

Entry-point functions:

• Initialization entry-point function — void my_autosar_swc_Init(void). At startup, call
this function once.

• Output and update entry-point function — void my_autosar_swc_Step(void). Call this
function periodically at the fastest rate in the model. For this model, call the function every
second. To achieve real-time execution, attach this function to a timer.

• Output and update entry-point function — void my_autosar_swc_Step1(void). Call this
function periodically at the second fastest rate in the model. For this model, call the function
every 2 seconds. To achieve real-time execution, attach this function to a timer.

 Optional: Generate AUTOSAR Software Component Code (Requires Embedded Coder)

1-25

The entry-point functions are also accessible in the Code Mappings editor, on the Functions tab.
You call these generated functions from external code or from a version of a generated main
function that you modify. If required, you can change the name of a function. For the base-rate
step function of a rate-based model and for step functions for export function models, you can
customize the function name and arguments.

Input ports:

• Block In1_1s — Require port, interface: sender-receiver of type real-T of 1 dimension
• Block In2_2s — Require port, interface: sender-receiver of type real-T of 1 dimension

Output ports:

• Block Out1 — Provide port, interface: sender-receiver of type real-T of 1 dimension
• Block Out2 — Provide port, interface: sender-receiver of type real-T of 1 dimension

5 Check whether the configuration changes that you made appear in the generated code by using
the Code panel in the Code perspective. To open the Code panel, on the AUTOSAR tab, click
View Code. The Code panel opens to the right of the model. In the search field, type
In1_1s_SS1, the new name for AUTOSAR software component port In1_1s. Then, click the
arrow button to advance to instances of the name in the ARXML file
my_autosar_swc_component.arxml. Verify that the settings of communication attributes that
you modified for the AUTOSAR software component port appear correctly.

6 Use the Code perspective Code panel to explore other aspects of the generated code. For
example, if you select file my_autosar_swc.c, and then click in the search field, a list of links to
code elements, including the entry-point functions, appears. Use the links to quickly navigate to
key areas of the generated C code.

1 Overview of AUTOSAR Support

1-26

See Also

Related Examples
• “Configure AUTOSAR Code Generation” on page 5-7

 Optional: Generate AUTOSAR Software Component Code (Requires Embedded Coder)

1-27

Develop AUTOSAR Adaptive Software Component Model

Prerequisites
This tutorial assumes that you are familiar with the basics of the AUTOSAR standard and Simulink.
The code generation portion of this tutorial assumes that you have knowledge of Embedded Coder
basics.

To complete this tutorial, you must have:

• MATLAB
• Simulink

An optional part of the tutorial requires Simulink Coder and Embedded Coder software.

Example Model
The tutorial uses example models LaneGuidance and autosar_LaneGuidance.

What You Will Learn
You will learn how to:

1 Create algorithmic model content that represents AUTOSAR adaptive software component
behavior.

2 Configure elements of an AUTOSAR adaptive software component for the Simulink modeling
environment.

1 Overview of AUTOSAR Support

1-28

3 Simulate the AUTOSAR adaptive software component.
4 Optionally, generate AUTOSAR adaptive software component code.

To start the tutorial, see “Create Algorithmic Model Content That Represents AUTOSAR Adaptive
Software Component Behavior” on page 1-30.

 Develop AUTOSAR Adaptive Software Component Model

1-29

Create Algorithmic Model Content That Represents AUTOSAR
Adaptive Software Component Behavior

AUTOSAR Blockset software supports AUTOSAR software component modeling for the AUTOSAR
Adaptive Platform. To develop an AUTOSAR adaptive software component in Simulink, create a
Simulink model that represents the AUTOSAR adaptive software component. Initiate the model
creation in one of these ways:

• Import an existing AUTOSAR XML (ARXML) component description into the Simulink environment
as a model. You import a component description by using the AUTOSAR ARXML importer.

• Rework an existing Simulink model into a representation of the AUTOSAR adaptive software
component.

• Starting from an AUTOSAR Blockset model template, create a Simulink model.

After creating an initial model design, refine the algorithmic content.

This tutorial shows a sample model representation of an AUTOSAR adaptive software component.

1 Open model LaneGuidance.

2 Explore the model. It consists of a subsystem, LaneGuidanceAlgorithm. The subsystem has six
inports, which represent required ports of the AUTOSAR adaptive software component:
leftLaneDistance, leftTurnIndicator, leftCarInBlindSpot, rightLaneDistance,
rightTurnIndicator, and rightCarInBlindSpot. Two outports represent provider ports:
leftHazardIndicator and rightHazardIndicator.

3 Set model configuration parameter System target file to autosar_adaptive.tlc. That
system target file setting enables use of AUTOSAR Blockset software and affects other model
configuration parameter settings. For example:

1 Overview of AUTOSAR Support

1-30

• Language is set to C++.
• Generate code only is selected.
• Toolchain is set to AUTOSAR Adaptive | CMake.
• Code interface packaging is set to C++ class.

4 At the top level of the model, set up event-based communication. An AUTOSAR adaptive software
component provides and consumes services. Each component contains:

• An algorithm that performs tasks in response to received events
• Required and provided ports, each associated with a service interface
• Service interfaces, with associated events and associated namespaces

AUTOSAR Blockset provides Event Receive and Event Send blocks to make the necessary event
and signal connections.

• After each root inport, add an Event Receive block, which converts an input event to a signal
while preserving the signal values and data type.

• Before each root outport, add an Event Send block, which converts an input signal to an event
while preserving the signal values and data type.

To expedite the block insertion, you can copy the event blocks from the completed version of the
example model autosar_LaneGuidance.

5 Explore the model configuration. Solver settings are:

• Type is set to Fixed-step.
• Solver is set to auto (Automatic solver selection).
• Fixed-step size (fundamental sample time) is set to 1/10.
• Periodic same time constraint is set to Unconstrained.

In the Simulink Editor, you can enable sample time color-code by selecting the Debug tab and
selecting Diagnostics > Information Overlays > Colors. A sample time legend shows the

 Create Algorithmic Model Content That Represents AUTOSAR Adaptive Software Component Behavior

1-31

implicit rate grouping. The legend for this model shows that the model uses a single rate of 0.1
second. The model simulates in single-tasking mode.

6 Save the model to a writable folder on your current MATLAB search path. Name the file
my_autosar_LaneGuidance.slx.

Next, configure elements of the AUTOSAR adaptive software component for use in the Simulink
modeling environment.

See Also

Related Examples
• “Modeling Patterns”

1 Overview of AUTOSAR Support

1-32

Configure Elements of AUTOSAR Adaptive Software Component
for Simulink Modeling Environment

After you create a representation of the AUTOSAR adaptive software component in the Simulink
Editor, configure elements of the software component for use in Simulink. The configuration maps
AUTOSAR adaptive software component elements to Simulink modeling elements.

AUTOSAR Blockset software reduces the effort of setting up a configuration by providing an
AUTOSAR Component Quick Start tool. If necessary, you can modify the initial configuration by using
the Code Mappings editor and the AUTOSAR Dictionary.

Set Up an Initial Component Configuration
Set up an initial configuration of an AUTOSAR adaptive software component by using the AUTOSAR
Component Quick Start tool.

1 Open your saved version of the example model my_autosar_LaneGuidance.
2 Run the AUTOSAR Component Quick Start tool. From the Apps tab, open the AUTOSAR

Component Designer app. When you open the app for an unmapped model that is configured with
an AUTOSAR system target file, the AUTOSAR Component Quick Start tool runs.

3 Advance through the steps of the AUTOSAR Component Quick Start tool. Each step prompts you
for input that the tool uses to configure your AUTOSAR software component for the Simulink
environment. For this tutorial, use the defaults.

 Configure Elements of AUTOSAR Adaptive Software Component for Simulink Modeling Environment

1-33

After you click Finish, the tool:

• Creates a mapping between elements of the AUTOSAR adaptive software component and
Simulink model elements.

• Opens the model in the Simulink Editor AUTOSAR Code perspective. The AUTOSAR Code
perspective displays the model and directly below the model, the Code Mappings editor.

• Displays the AUTOSAR software component mappings in the Code Mappings editor, which
you can use to customize the configuration.

4 Save the model.

Customize Component Configuration
The AUTOSAR Component Quick Start tool sets up an initial configuration for an AUTOSAR adaptive
software component. To refine or make changes to an existing component configuration, use the Code
Mappings editor and the AUTOSAR Dictionary.

1 Overview of AUTOSAR Support

1-34

In a tabbed table format, the Code Mappings editor displays Simulink model inports and outports.
Map Simulink inports and outports to AUTOSAR adaptive software component ports in the editor.
AUTOSAR adaptive software component ports are defined in the AUTOSAR standard.

1 If not already open, open model my_autosar_LaneGuidance.
2 In the Code Mappings editor, examine the mapping of Simulink inports and outports to AUTOSAR

ports and events. In each tab, you can select model elements and modify their AUTOSAR
mapping and attributes. Modifications are reflected in generated ARXML descriptions and C
code.

Select the Inports tab. For each Simulink inport, the editor lists the corresponding AUTOSAR
port type and event. For example, Simulink inport leftLaneDistance is mapped to an
AUTOSAR required port and event LeftLaneDistance.

3 With a Code Mappings editor row selected, open the Property Inspector. Check whether you need
to reconfigure data types or other attributes of model data. For example, verify that event data is
configured correctly for the design. For this tutorial, make no changes.

Configure AUTOSAR Adaptive Software Component Elements from
AUTOSAR Standard Perspective
Configure AUTOSAR software component elements from the perspective of the AUTOSAR standard
perspective by using the AUTOSAR Dictionary.

1 If not already open, open model my_autosar_LaneGuidance.
2 Open the AUTOSAR Dictionary. In the Code Mappings editor, click the AUTOSAR Dictionary

button . The AUTOSAR Dictionary opens in the AUTOSAR view, which corresponds to the
Simulink element that you last selected and mapped in the Code Mappings editor. If you selected
and mapped a Simulink inport, the dictionary opens in RequiredPorts view and displays the
AUTOSAR port that you mapped the inport to.

In a tree format, the AUTOSAR Dictionary displays the mapped AUTOSAR software component
and its elements, interfaces, and XML options.

3 Use the AUTOSAR Dictionary to further customize component configurations. For example, you
can use the dictionary to:

• Expand service interface nodes to examine AUTOSAR events created during the default
component mapping.

• Define a unique namespace for each service interface. The code generator uses the defined
namespaces when producing C++ code for the model.

• Configure characteristics of exported AUTOSAR XML.

In the left pane of the dictionary, expand the tree nodes and explore what is defined for the
model.

4 For this tutorial, add namespaces for service interfaces ProvidedInterface and
RequiredInterface.

a In the left pane of the dictionary, expand the Service Interfaces and ProvidedInterface
nodes.

b Select Namespaces.

 Configure Elements of AUTOSAR Adaptive Software Component for Simulink Modeling Environment

1-35

c In the right pane, click the plus sign.
d Set Name and Symbol to company.
e Add namespace entries for chassis and provided.
f Add company, chassis, and required namespace entries for the RequiredInterface

node.

5 Close the dictionary.
6 Save the model.

Next, simulate the AUTOSAR software component.

See Also

Related Examples
• “Create AUTOSAR Software Component in Simulink” on page 3-2
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21

1 Overview of AUTOSAR Support

1-36

Simulate AUTOSAR Adaptive Software Component
After you configure the AUTOSAR adaptive software component model for use in the Simulink
environment, simulate model my_autosar_LaneGuidance, which you configured in “Configure
Elements of AUTOSAR Adaptive Software Component for Simulink Modeling Environment” on page
1-33.

1 If not already open, open your configured version of model my_autosar_LaneGuidance.
2

In the Simulink Coder Editor, click the Simulate button .

If you have access to Simulink Coder and Embedded Coder software, next, generate code for the
AUTOSAR model.

See Also

Related Examples
• “Update Diagram and Run Simulation”

 Simulate AUTOSAR Adaptive Software Component

1-37

Optional: Generate AUTOSAR Adaptive Software Component
Code (Requires Embedded Coder)

If you have access to Simulink Coder and Embedded Coder software, you can build an AUTOSAR
adaptive model. When you build an AUTOSAR adaptive model, the code generator produces C++
code that complies with the AUTOSAR standard for the Adaptive Platform and ARXML descriptions.

1 If not already open, open your configured version of model my_autosar_LaneGuidance.
2 Initiate code generation by pressing Ctrl+B. The code generator produces C++ code and

ARXML files. The generated code complies with the AUTOSAR standard so that you can schedule
the code with the AUTOSAR run-time environment.

The code generator also produces and displays a code generation report.
3 In the code generation report, review the generated code. In your current MATLAB folder, the

my_autosar_LaneGuidance_autosar_adaptive folder contains the primary files listed in
this table.

Generated Code Files

Files Description
my_autosar_LaneGuidance.cpp Contains entry points for the code that

implements the model algorithm. This file
includes the rate scheduling code.

my_autosar_LaneGuidance.h Declares model data structures and a public
interface to the model entry points and data
structures.

rtwtypes.h Defines data types, structures, and macros
that the generated code requires.

my_autosar_LaneGuidance.arxml
my_autosar_LaneGuidance_ExecutionM
anifest.arxml
my_autosar_LaneGuidance_ServiceIns
tanceManifest.arxml

The main ARXML file contains elements and
objects that represent AUTOSAR software
components, ports, interfaces, data types,
and packages. The manifest files provide
deployment-related and service-configuration
information. You integrate ARXML files into
an AUTOSAR run-time environment. You can
import ARXML files into the Simulink
environment by using the AUTOSAR ARXML
importer tool.

main.cpp
MainUtils.hpp

Provide a framework for running adaptive
software component service code.

4 Open and review the Code Interface Report. This information is captured in the ARXML files. The
run-time environment generator uses the ARXML descriptions to interface the code into an
AUTOSAR run-time environment.

Entry-point functions

• Initialization entry-point function — void
my_autosar_LaneGuidanceModelClass::initialize(). At startup, call this function
once.

1 Overview of AUTOSAR Support

1-38

• Output entry-point function — void my_autosar_LaneGuidanceModelClass::step().
Call this function periodically, every 0.1 seconds.

• Termination entry-point function — void
my_autosar_LaneGuidanceModelClass::terminate(). At shutdown, call this function
once.

Input ports:

• Block leftLaneDistance — Require port, interface: sender-receiver of type real-T of 1
dimension

• Block leftTurnIndicator — Require port, interface: sender-receiver of type real-T of 1
dimension

• Block rightLaneDistance — Require port, interface: sender-receiver of type real-T of 1
dimension

• Block rightTurnIndicator — Require port, interface: sender-receiver of type real-T of 1
dimension

• Block leftCarInBlindSpot — Require port, interface: sender-receiver of type real-T of 1
dimension

• Block rightCarInBlindSpot — Require port, interface: sender-receiver of type real-T of 1
dimension

Output ports:

• Block leftHazardIndicator — Port defined externally of type real-T of 1 dimension
• Block rightHazardIndicator — Port defined externally of type real-T of 1 dimension

5 Check whether the configuration changes that you made appear in the generated code by using
the Code panel in the Code perspective. To open the Code panel, on the AUTOSAR tab, click
View Code. The Code panel opens to the right of the model.

With file my_autosar_LaneGuidance.cpp selected, in the search field, type company (one of
the namespace values that you defined for the service interfaces). The Code view highlights
instances of company, showing how the namespace symbols are applied in the code.

 Optional: Generate AUTOSAR Adaptive Software Component Code (Requires Embedded Coder)

1-39

6 Use the Code perspective Code panel to explore other aspects of the generated code. For
example, if you select file my_autosar_LaneGuidance.cpp, and then click in the search field, a
list of links to code elements appear. Use the links to quickly navigate to key areas of the
generated code.

See Also

Related Examples
• “Configure AUTOSAR Adaptive Code Generation” on page 6-73

1 Overview of AUTOSAR Support

1-40

Develop AUTOSAR Software Architecture Model

Prerequisites
This tutorial assumes that you are familiar with the basics of the AUTOSAR standard and Simulink.
The code generation portion of this tutorial assumes that you have knowledge of Embedded Coder
basics.

To complete this tutorial, you must have:

• MATLAB
• Simulink
• System Composer

An optional part of the tutorial requires Simulink Coder and Embedded Coder software.

Example Model
The tutorial uses example model autosar_tpc_composition and several supporting models that
implement AUTOSAR component behavior. To open the models in a local working example folder,
click this autosar_tpc_composition link or enter the MATLAB command
openExample('autosar_tpc_composition').

What You Will Learn
You will learn how to:

1 Create a software architecture canvas for developing AUTOSAR compositions and components.
2 Add and connect AUTOSAR compositions and components and add Simulink behavior to

components.
3 Simulate the behavior of aggregated components in an AUTOSAR architecture model.
4 Optionally, export composition and component AUTOSAR XML files and generate component

code from an AUTOSAR architecture model.

To start the tutorial, see “Create AUTOSAR Software Architecture Model” on page 1-42.

 Develop AUTOSAR Software Architecture Model

1-41

Create AUTOSAR Software Architecture Model
To begin developing AUTOSAR compositions and components in a software architecture canvas,
create an AUTOSAR architecture model (requires System Composer).

1 Open a local working folder containing example models required for this tutorial. Click this
autosar_tpc_composition link or enter the MATLAB command
openExample('autosar_tpc_composition'). After you open the folder, you can close the
autosar_tpc_composition model or leave it open for reference.

2 Open the Simulink Start Page by entering the MATLAB command simulink.

On the New tab, scroll down to AUTOSAR Blockset and expand the list of model templates. Place
your cursor over the Software Architecture template and click Create Model.

A new AUTOSAR architecture model opens.

• In the Simulink Toolstrip, the Modeling tab supports common tasks for architecture
modeling.

• To the left of the model window, the palette includes icons for adding different types of
AUTOSAR components to the model: Software Component, Software Composition, and for
Basic Software (BSW) modeling, Diagnostic Service Component and NVRAM Service
Component.

• The composition editor provides a view of AUTOSAR software architecture based on the
AUTOSAR Virtual Function Bus (VFB). The model canvas initially is empty.

1 Overview of AUTOSAR Support

1-42

This tutorial constructs a throttle position control application. Perform the steps in a new architecture
model or refer to example model autosar_tpc_composition, which shows the end result.

Next, add and connect AUTOSAR compositions and components and add Simulink behavior to
components.

See Also

Related Examples
• “Create AUTOSAR Architecture Models” on page 8-2

 Create AUTOSAR Software Architecture Model

1-43

Add AUTOSAR Compositions and Components and Link
Component Implementations

After you create an AUTOSAR architecture model, you begin authoring the top level of an AUTOSAR
software design. Use the composition editor and the Simulink Toolstrip Modeling tab to add and
connect AUTOSAR compositions and components.

In the previous step, you opened a local working example folder and created an empty AUTOSAR
architecture model. If necessary, repeat the step to open the working folder and create the empty
model.

As you construct a throttle position control application, you can refer to example model
autosar_tpc_composition, which shows the end result.

Add Compositions and Components to Architecture Canvas
Typically, an AUTOSAR composition contains a set of AUTOSAR components and compositions with a
shared purpose. As part of constructing a throttle position control application, this tutorial places
four sensor components in a sensors composition.

To add the sensors composition and its components to the AUTOSAR architecture model:

1 In the architecture model canvas, add a Software Composition block and name it Sensors. For
example, on the Modeling tab, select Software Composition and insert a Software
Composition block in the canvas. In the highlighted name field, enter Sensors.

1 Overview of AUTOSAR Support

1-44

2 To populate a composition, you open the Software Composition block and add Software
Component blocks.

Open the Sensors block so that the model canvas shows the composition content. Inside the
composition, add AUTOSAR software components named TPS_Primary, TPS_Secondary, Monitor,
and PedalSensor. For example, on the Modeling tab, you can select Software Component to
create each one.

Next, you add require and provide ports to the components, and then connect the component ports to
other component blocks or to composition root ports. To add component require and provide ports,
this tutorial links Software Component blocks to implementation models in which the ports are
already defined.

Define Component Behavior by Linking Implementation Models
The behavior of an AUTOSAR application is defined by its AUTOSAR software components. After you
insert Software Component blocks in an AUTOSAR architecture model, you can add Simulink
behavior to the components. For each Software Component block, you can:

• Create a model based on the block interface.
• Link to an implementation model.
• Create a model from an AUTOSAR XML (ARXML) component description.

For convenience, this tutorial provides a Simulink implementation model for each AUTOSAR
component:

• autosar_tpc_throttle_sensor1.slx for component TPS_Primary
• autosar_tpc_throttle_sensor2.slx for component TPS_Secondary
• autosar_tpc_throttle_sensor_monitor.slx for component Monitor
• autosar_tpc_pedal_sensor.slx for component PedalSensor

 Add AUTOSAR Compositions and Components and Link Component Implementations

1-45

To add Simulink behavior to the components:

1 In the architecture model, open the Sensors composition block if it is not already open. Inside the
composition, link each AUTOSAR sensor component to a Simulink model that implements its
behavior.

For example, select the TPS_Primary component block, place your cursor over the displayed
ellipsis, and select the cue Link to Model.

In the Link to Model dialog box, browse to the implementation model
autosar_tpc_throttle_sensor1.slx.

To link the component to the implementation model, click OK.
2 Link components TPS_Secondary, Monitor, and PedalSensor to their implementation models.

After you link each model, you can resize the associated component block to better display the
component ports.

Linking a Software Component block to a specified implementation model updates the block and
model interfaces to match. If you link to a model that uses root Inport and Outport blocks, the

1 Overview of AUTOSAR Support

1-46

software converts the model signal ports to bus ports. To view the model content, open the
Software Component block.

3 Connect the components to each other and to composition root ports.

• To interconnect components, drag a line from a component provider port to another
component receiver port.

• To connect components to Sensors composition root ports, drag from a component port to the
Sensors composition boundary.

4 Optionally, to exactly match the root port naming in example model
autosar_tpc_composition, rename ports TPS_HwIO and TPS_HwIO1 to TPS1_HwIO and
TPS2_HwIO.

Complete Architecture Model Top Level
To complete the throttle position control application:

1 Return to the top level of the architecture model. Add two Software Component blocks and name
them Ctrl and Actuator.

2 Link the AUTOSAR components Ctrl and Actuator to their Simulink implementation models,
autosar_tpc_controller.slx and autosar_tpc_actuator.slx.

3 Connect the Sensors composition, Ctrl component, and Actuator component to each other and to
the architecture model boundary.

 Add AUTOSAR Compositions and Components and Link Component Implementations

1-47

4 To check for interface or data type issues, update the architecture model. On the Modeling tab,
select Update Model. If any issues are found, compare your model with example model
autosar_tpc_composition.

5 Save the model with a unique name, such as myTPC_Composition.slx.

Next, simulate the behavior of the aggregated components in the AUTOSAR architecture model.

See Also

Related Examples
• “Add and Connect AUTOSAR Compositions and Components” on page 8-4
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21

1 Overview of AUTOSAR Support

1-48

Simulate Components in AUTOSAR Architecture
To simulate the behavior of the aggregated components in an AUTOSAR architecture model, go to the
top level of the architecture model and click Run.

If you try to run the architecture model constructed in this tutorial, an error message reports that a
function definition was not found for a Basic Software (BSW) function caller block. Three of the
component implementation models contain BSW function calls that require BSW service
implementations.

To view those function calls, open your architecture model, for example, myTPC_Composition.slx.
On the Debug tab, select Information Overlays > Function Connectors. This selection lists
function connectors for each model that contains function calls. To see the models with BSW function
calls, open the Sensors composition.

The models contain function calls to Diagnostic Event Manager (Dem) and NVRAM Manager (NvM)
services. Before the application can be simulated, you must add Diagnostic Service Component and
NVRAM Service Component blocks to the top model.

1 Return to the top level of the architecture model and select the Modeling tab. To add the service
implementation blocks, select and place an instance of Diagnostic Service Component and an
instance of NVRAM Service Component. To wire the function callers to the BSW service
implementations, update the model.

 Simulate Components in AUTOSAR Architecture

1-49

2 After adding DEM/FIM and NvM service blocks to a model, check the mapping of the BSW
function-caller client ports to BSW service IDs. Dem client ports map to Dem service event IDs
and NvM client ports map to NvM service block IDs. For this tutorial, update the Dem mapping.
Open the DEM/FIM block dialog box, select the RTE tab, and enter the event ID values shown.
Click OK. For more information about BSW ID mapping, see “Simulate AUTOSAR Basic Software
Services and Run-Time Environment” on page 7-36.

3 The architecture model is now ready to be simulated. Click Run.

Next, if you have access to Embedded Coder software, you can export composition and component
AUTOSAR XML files and generate component code from the AUTOSAR architecture model.

See Also

Related Examples
• “Configure AUTOSAR Scheduling and Simulation” on page 8-31

1 Overview of AUTOSAR Support

1-50

Optional: Generate and Package Composition ARXML and
Component Code (Requires Embedded Coder)

If you have access to Simulink Coder and Embedded Coder software, you can export composition and
component AUTOSAR XML (ARXML) files and generate component code from an AUTOSAR
architecture model. Optionally, you can create a ZIP file to package build artifacts for the model
hierarchy, for example, for relocation to a testing or integration environment.

1 Open the architecture model constructed in this tutorial or open example model
autosar_tpc_composition.

2 Optionally, to prepare for exporting ARXML, you can examine and modify XML options. On the
Modeling tab, select Export > Configure XML Options. XML options specified at the
architecture model level are inherited during export by each component in the model.

3 To generate and package code for the throttle position control application, on the Modeling tab,
select Export > Generate Code and ARXML. In the Export Composition dialog box, specify the
name of the ZIP file in which to package the generated files. To begin the export, click OK.

As the architecture model builds, you can view the build log in the Diagnostic Viewer. First the
component models build, each as a standalone top-model build. Finally, composition ARXML is
exported. When the build is complete, the current folder contains build folders for the
architecture model and each component model in the hierarchy, and the specified ZIP file.

4 Expand the ZIP file. Its content is organized in arxml and src folders.

5 Examine the arxml folder. Each AUTOSAR component has component and implementation
description files, while the architecture model has composition, datatype, interface, and timing
description files. The composition file includes XML descriptions of the composition, component
prototypes, and composition ports and connectors. The datatype, interface, and timing files
aggregate elements from the entire architecture model hierarchy.

 Optional: Generate and Package Composition ARXML and Component Code (Requires Embedded Coder)

1-51

6 Examine the src folder. Each component model has a build folder that contains artifacts from a
standalone model build.

See Also

Related Examples
• “Generate and Package AUTOSAR Composition XML Descriptions and Component Code” on

page 8-36

1 Overview of AUTOSAR Support

1-52

Modeling Patterns for AUTOSAR
Components

• “Simulink Modeling Patterns for AUTOSAR” on page 2-2
• “Model AUTOSAR Software Components” on page 2-3
• “Modeling Patterns for AUTOSAR Runnables” on page 2-11
• “Model AUTOSAR Runnables Using Exported Functions” on page 2-19
• “Model AUTOSAR Communication” on page 2-22
• “Model AUTOSAR Component Behavior” on page 2-32
• “Model AUTOSAR Variants” on page 2-38
• “Model AUTOSAR Nonvolatile Memory” on page 2-41
• “Model AUTOSAR Data Types” on page 2-44
• “Model AUTOSAR Calibration Parameters and Lookup Tables” on page 2-51

2

Simulink Modeling Patterns for AUTOSAR
The following topics present Simulink modeling patterns for common AUTOSAR elements. You can
use these modeling patterns when developing models for the AUTOSAR Classic Platform.

• “Model AUTOSAR Software Components” on page 2-3
• “Modeling Patterns for AUTOSAR Runnables” on page 2-11
• “Model AUTOSAR Runnables Using Exported Functions” on page 2-19
• “Model AUTOSAR Communication” on page 2-22
• “Model AUTOSAR Component Behavior” on page 2-32
• “Model AUTOSAR Variants” on page 2-38
• “Model AUTOSAR Nonvolatile Memory” on page 2-41
• “Model AUTOSAR Data Types” on page 2-44
• “Model AUTOSAR Calibration Parameters and Lookup Tables” on page 2-51

2 Modeling Patterns for AUTOSAR Components

2-2

Model AUTOSAR Software Components
In Simulink, you can flexibly model the structure and behavior of software components for the
AUTOSAR Classic Platform. Components can contain one or multiple runnable entities, and can be
single-instance or multi-instance. To design the internal behavior of components, you can use
Simulink modeling styles, such as rate-based and function-call based.

In this section...
“About AUTOSAR Software Components” on page 2-3
“Implementation Considerations” on page 2-3
“Rate-Based Components” on page 2-6
“Function-Call Based Components” on page 2-8
“Multi-Instance Components” on page 2-9
“Startup, Reset, and Shutdown” on page 2-9

About AUTOSAR Software Components
An AUTOSAR application is made up of interconnected software components (SWCs). Each software
component encapsulates a functional implementation of automotive behavior, with well-defined
connection points to the outside world.

In Simulink, you can model:

• Atomic software components — An atomic software component cannot be split into smaller
software components, and runs on exactly one automotive electronic control unit (ECU).

• Parameter software components — A parameter software component represents memory
containing AUTOSAR calibration parameters, and provides parameter data to connected atomic
software components.

The main focus of AUTOSAR modeling in Simulink is atomic software components. For information
about parameter software components, see “Model AUTOSAR Calibration Parameters and Lookup
Tables” on page 2-51.

Note Do not confuse atomic in this context with the Simulink concept of atomic subsystems.

An AUTOSAR atomic software component interacts with other AUTOSAR software components or
system services via well-defined connection points called ports. One or more runnable entities
(runnables) implement the behavior of the component.

Implementation Considerations
To develop an AUTOSAR atomic software component in Simulink, you create an initial Simulink
representation of an AUTOSAR component, as described in “Component Creation”. You can either
import an AUTOSAR component description from ARXML files or, in an existing model, build a default
AUTOSAR component based on the model content. The resulting representation includes:

• Simulink blocks, connections, and data that model AUTOSAR elements such as ports, runnables,
inter-runnable variables, and parameters.

 Model AUTOSAR Software Components

2-3

• Stored properties, defined in the AUTOSAR standard, for AUTOSAR elements in the software
component.

• A mapping of Simulink elements to AUTOSAR elements.

Usually, the Simulink representation of an AUTOSAR component is a rate-based model, in which
periodic runnables are modeled as atomic subsystems with periodic rates.

Consider AUTOSAR example model autosar_swc. This model shows a rate-based implementation of
an AUTOSAR atomic software component. The model implements periodic runnables using multiple
rates. An Initialize Function block initializes the component.

However, if your component design requires server functions or periodic function calls, the Simulink
representation can be a function-call based model. The model can contain Simulink Function blocks
or function-call subsystems with periodic rates.

Consider AUTOSAR example model autosar_swc_slfcns. This model shows a function-call based
implementation of an AUTOSAR atomic software component. The model uses a Simulink Function
block and a periodic function-call subsystem at root level. An Initialize Function block initializes the
component.

2 Modeling Patterns for AUTOSAR Components

2-4

If your AUTOSAR software component design contains periodic runnables, you must decide whether
your component requires a rate-based or function-call based modeling approach. Before you create
an initial Simulink representation of your AUTOSAR component, designate how to model periodic
runnables:

• If you are importing an AUTOSAR component description from ARXML files using
arxml.importer object function createComponentAsModel, specify the property
ModelPeriodicRunnablesAs as AtomicSubsystem (default) for rate-based or
FunctionCallSubsystem for function-call based.

• If you are building a default AUTOSAR component in an existing model, populate the model with
rate-based or function-call based content.

• For rate-based modeling, create model content with one or more periodic rates. To model an
AUTOSAR inter-runnable variable, use a Rate Transition block that handles data transfers
between blocks operating at different rates. The resulting component has N periodic step
runnables, where N is the number of discrete rates in the model. Events that represent rate-
based interrupts initiate execution of the periodic step runnables, using rate monotonic
scheduling.

• For function-call based modeling, at the top level of a model, create function-call subsystems —
or (for client-server modeling) Simulink Function blocks. Add root model inports and outports.
To model an AUTOSAR inter-runnable variable, use a signal line to connect function-call
subsystems. The resulting component has N exported-function or server runnables. N is the
number of function-call subsystems or Simulink Function blocks at the top level of the model.
Events that represent function calls initiate execution of the function-based runnables.

Select rate-based modeling, the default, unless your design requires function-call based modeling.

Sometimes, conditions in your AUTOSAR software component can prevent use of rate-based
modeling. For example:

• The AUTOSAR software component contains a server runnable.
• The AUTOSAR software component contains an inter-runnable variable (IRV) that multiple

runnables read or write.

 Model AUTOSAR Software Components

2-5

• The AUTOSAR software component contains a periodic runnable with a rate that is not a multiple
of the fastest rate.

• The AUTOSAR software component contains multiple runnables that access the same read or
write data at different rates.

• The AUTOSAR software component contains a periodic runnable that other events also trigger.
• The AUTOSAR software component contains multiple periodic runnables that are triggered at the

same period.

If your AUTOSAR software component supports multiple instantiation (that is,
SwcInternalBehavior attribute supportsMultipleInstantiation is set to true), you cannot
model periodic runnables as function-call subsystems. Either use rate-based modeling and model
periodic runnables as atomic subsystems, or set supportsMultipleInstantiation to false.

For examples of different ways to model AUTOSAR software components, see “Rate-Based
Components” on page 2-6, “Function-Call Based Components” on page 2-8, and “Modeling
Patterns for AUTOSAR Runnables” on page 2-11.

Rate-Based Components
You can model AUTOSAR multi-runnables using Simulink rate-based, multitasking modeling. First you
create or import model content with multiple periodic rates. You can:

• Create a software component with multiple periodic runnables in Simulink.
• Import a software component with multiple periodic runnables from ARXML files into Simulink.

Use arxml.importer object function createComponentAsModel with property
ModelPeriodicRunnablesAs set to AtomicSubsystem.

• Migrate an existing rate-based, multitasking Simulink model to the AUTOSAR target.

Root model inports and outports represent AUTOSAR ports, and Rate Transition blocks represent
AUTOSAR inter-runnable variables (IRVs).

Here is an example of a rate-based, multitasking model that is suitable for simulation and AUTOSAR
code generation. (This example uses the model matlabroot/help/toolbox/autosar/examples/
mMultitasking_4rates.slx.) The model represents an AUTOSAR software component. The colors
displayed when you update the model (if colors are enabled on the Debug tab, under Diagnostics >
Information Overlays) represent the different periodic rates present. The Rate Transition blocks
represent AUTOSAR IRVs.

2 Modeling Patterns for AUTOSAR Components

2-6

When you generate code, the model C code contains rate-grouped model step functions
corresponding to AUTOSAR runnables, one for each discrete rate in the model. (The periodic step
functions must be called in the manner of a rate-monotonic scheduler.) For more information, see
“Modeling Patterns for AUTOSAR Runnables” on page 2-11.

A rate-based AUTOSAR software component can include both periodic and asynchronous runnables.
For example, in the JMAAB type beta architecture, an asynchronous trigger runnable interacts with
periodic rate-based runnables.

Consider AUTOSAR example model autosar_swc_fcncalls. This model shows a rate-based
implementation of an AUTOSAR atomic software component that includes an asynchronous
(triggered) function-call subsystem at root level. An Initialize Function block initializes the
component.

 Model AUTOSAR Software Components

2-7

For more information, see “Add Top-Level Asynchronous Trigger to Periodic Rate-Based System” on
page 4-193.

Function-Call Based Components
You can model AUTOSAR multi-runnables using Simulink function-call subsystems — or (for client-
server modeling) Simulink Function blocks — at the top level of a model. First you create or import
model content with multiple functions. You can:

• Create a software component with multiple runnables modeled as function-call subsystems or
Simulink Function blocks in Simulink.

• Import a software component with multiple runnables from ARXML files into Simulink. Use
arxml.importer object function createComponentAsModel with property
ModelPeriodicRunnablesAs set to FunctionCallSubsystem.

• Migrate an existing function-based Simulink model to the AUTOSAR target.

Root model inports and outports represent AUTOSAR ports, and signal lines connecting function-call
subsystems represent AUTOSAR inter-runnable variables (IRVs).

Here is an example of a function-call-based model, with multiple runnable entities, that is suitable for
simulation and AUTOSAR code generation. (This example uses AUTOSAR example model
autosar_swc_slfcns.) The model represents an AUTOSAR software component. The function-call
subsystem labeled SS1 and the Simulink Function block readData represent runnables that
implement its behavior. An Initialize Function block initializes the component. The signal line
curValIRV represents an AUTOSAR IRV.

2 Modeling Patterns for AUTOSAR Components

2-8

When you generate code, the model C code includes callable model entry-point functions
corresponding to AUTOSAR runnables, one for each top-model function-call subsystem or Simulink
Function block. For more information, see “Modeling Patterns for AUTOSAR Runnables” on page 2-
11.

Multi-Instance Components
You can model multi-instance AUTOSAR SWCs in Simulink. For example, you can:

• Map and configure a Simulink model as a multi-instance AUTOSAR SWC, and validate the
configuration. Use the Reusable function setting of the model parameter Code interface
packaging (Simulink Coder).

• Generate C code with reentrant runnable functions and multi-instance RTE API calls. You can
access external I/O, calibration parameters, and per-instance memory, and use reusable
subsystems in multi-instance mode.

• Verify AUTOSAR multi-instance C code with SIL and PIL simulations.
• Import and export multi-instance AUTOSAR SWC description XML files.

Note Configuring a model as a multi-instance AUTOSAR SWC is not supported when the model uses
a function-call based modeling style. That is, when the model contains either of these blocks:

• Simulink Function
• Model-level Inport configured to output a function call

Startup, Reset, and Shutdown
AUTOSAR applications sometimes require complex logic to execute during system initialization,
reset, and termination sequences. To model startup, reset, and shutdown processing in an AUTOSAR
software component, use the Simulink blocks Initialize Function and Terminate Function.

 Model AUTOSAR Software Components

2-9

The Initialize Function and Terminate Function blocks can control execution of a component in
response to initialize, reset, or terminate events. You can place the blocks at any level of a model
hierarchy. Each nonvirtual subsystem can have its own set of initialize, reset, and terminate functions.
In a lower-level model, Simulink aggregates the content of the functions with corresponding
instances in the parent model.

The Initialize Function and Terminate Function blocks contain an Event Listener block. To specify the
event type of the function — Initialize, Reset, or Terminate — use the Event type parameter of
the Event Listener block. In addition, the function block reads or writes the state of conditions for
other blocks. By default, Initialize Function block initializes block state with the State Writer block.
Similarly, the Terminate Function block saves block state with the State Reader block. When the
function is triggered, the value of the state variable is written to or read from the specified block.

AUTOSAR models can use the blocks to model potentially complex AUTOSAR startup, reset, and
shutdown sequences. The subsystems work with any AUTOSAR component modeling style. (However,
software-in-the-loop simulation of AUTOSAR initialize, reset, or terminate runnables works only with
exported function modeling.)

In an AUTOSAR model, you map each Simulink initialize, reset, or terminate entry-point function to
an AUTOSAR runnable. For each runnable, configure the AUTOSAR event that activates the runnable.
In general, you can select any AUTOSAR event type except TimingEvent.

For more information, see “Configure AUTOSAR Initialize, Reset, or Terminate Runnables” on page 4-
187.

See Also
Rate Transition | Simulink Function | Initialize Function | Terminate Function | Event Listener | State
Writer | State Reader

Related Examples
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Modeling Patterns for AUTOSAR Runnables” on page 2-11
• “Configure AUTOSAR Runnables and Events” on page 4-178
• “Configure AUTOSAR Initialize, Reset, or Terminate Runnables” on page 4-187
• “Add Top-Level Asynchronous Trigger to Periodic Rate-Based System” on page 4-193
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “AUTOSAR Component Configuration” on page 4-3

2 Modeling Patterns for AUTOSAR Components

2-10

Modeling Patterns for AUTOSAR Runnables

Use Simulink® models, subsystems, and functions to model AUTOSAR atomic software components
and their runnable entities (runnables).

Multiple Periodic Runnables Configured for Multitasking

Open the example model autosar_swc.slx.

open_system('autosar_swc')

The model shows the implementation of an AUTOSAR atomic software component (ASWC). Two
periodic runnables, Runnable_1s and Runnable_2s, are modeled with multiple sample rates: 1
second (In1_1s) and 2 seconds (In2_2s). To maximize execution efficiency, the model is configured
for multitasking.

The model includes an Initialize Function block, which initializes the integrator in Runnable_2s to a
value of 1.

To display color-coded sample rates with annotations and a legend, on the Debug tab, select
Diagnostics > Information Overlays > Colors.

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Fixed-step size (fundamental sample time) set to auto.
• Solver > Treat each discrete rate as a separate task selected.

Scheduling

In the model window, enable sample time color-coding by selecting the Debug tab and selecting
Diagnostics > Information Overlays > Colors. The sample time legend shows the implicit rate

 Modeling Patterns for AUTOSAR Runnables

2-11

grouping. Red represents the fastest discrete rate. Green represents the second fastest discrete rate.
Yellow represents the mixture of the two rates.

Because the model has multiple rates and the Solver parameter Treat each discrete rate as a
separate task is selected, the model simulates in multitasking mode. The model handles the rate
transition for In2_2s explicitly with the Rate Transition block.

The Rate Transition block parameter Ensure deterministic data transfer is cleared to facilitate
integration into an AUTOSAR run-time environment.

The generated code for the model schedules subrates in the model. In this example, the rate for
Inport block In2_2s, the green rate, is a subrate. The generated code properly transfers data
between tasks that run at the different rates.

Generate Code and Report (Embedded Coder)

If you have Simulink Coder and Embedded Coder software, generate code and a code generation
report. The example model generates a report.

Generated code complies with AUTOSAR so that you can schedule the code with the AUTOSAR run-
time environment.

Review Generated Code

In the code generation report, review the generated code.

• autosar_swc.c contains entry points for the code that implements the model algorithm. This file
includes the rate scheduling code.

• autosar_swc.h declares model data structures and a public interface to the model entry points
and data structures.

• autosar_swc_private.h contains local define constants and local data required by the model
and subsystems.

• autosar_swc_types.h provides forward declarations for the real-time model data structure and
the parameters data structure.

• rtwtypes.h defines data types, structures, and macros that the generated code requires.
• autosar_swc_component.arxml, autosar_swc_datatype.arxml,

autosar_swc_implementation.arxml, and autosar_swc_interface.arxml contain
elements and objects that represent AUTOSAR software components, ports, interfaces, data types,
and packages. You integrate ARXML files into an AUTOSAR run-time environment. You can import
ARXML files into the Simulink environment by using the AUTOSAR ARXML importer tool.

• Compiler.h, Platform_Types.h, Rte_ASWC.h, Rte_Type.h, and Std_Types.h contain stub
implementations of AUTOSAR run-time environment functions. Use these files to test the
generated code in Simulink, for example, in software-in-the-loop (SIL) or processor-in-the-loop
(PIL) simulations of the component under test.

Code Interface

Open and review the Code Interface Report. This information is captured in the ARXML files. The
run-time environment generator uses the ARXML descriptions to interface the code into an AUTOSAR
run-time environment.

Input ports:

2 Modeling Patterns for AUTOSAR Components

2-12

• Require port, interface: sender-receiver of type real-T of 1 dimension
• Require port, interface: sender-receiver of type real-T of 1 dimension

Entry-point functions:

• Initialization entry-point function, void Runnable_Initialize(void). At startup, call this
function once.

• Output and update entry-point function, void Runnable_1s(void). Call this function
periodically at the fastest rate in the model. For this model, call the function every second. To
achieve real-time execution, attach this function to a timer.

• Output and update entry-point function, void Runnable_2s(void). Call this function
periodically at the second fastest rate in the model. For this model, call the function every 2
seconds. To achieve real-time execution, attach this function to a timer.

Output ports:

• Provide port, interface: sender-receiver of type real-T of 1 dimension
• Provide port, interface: sender-receiver of type real-T of 1 dimension

Multiple Runnables Configured as Periodic-Rate Runnable and Asynchronous Function-Call
Runnable

Open the example model autosar_swc_fcncalls.slx.

open_system('autosar_swc_fcncalls')

The model shows the implementation of an AUTOSAR atomic software component (ASWC). The
model uses an asynchronous function-call runnable, Runnable_Trigger, which is triggered by an
external event. The model also includes a periodic rate-based runnable, Runnable_1s. The Rate
Transition blocks represent inter-runnable variables (IRVs).

Use this approach to model the JMAAB complex control model type beta architecture. In JMAAB type
beta modeling, at the top level of a control model, you place function layers above scheduling layers.

The model includes an Initialize Function block, which initializes the unit delay in Runnable_1s to a
value of 0.

To display color-coded sample rates with annotations and a legend, on the Debug tab, select
Diagnostics > Information Overlays > Colors.

 Modeling Patterns for AUTOSAR Runnables

2-13

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Fixed-step size (fundamental sample time) set to 1.
• Solver > Treat each discrete rate as a separate task cleared.

Scheduling

In the model window, enable sample time color-coding by selecting the Debug tab and selecting
Diagnostics > Information Overlays > Colors. The sample time legend shows the implicit rate
grouping. Red represents the discrete rate. Magenta represents the asynchronous function trigger.
Yellow represents the mixture of two rates.

The asynchronous trigger runnable runs at asynchronous rates (the Sample time type parameter of
the function-call subsystem Trigger block is set to |triggered]) while the periodic rate runnable runs
at the specified discrete rate. The generated code manages the rates by using single-tasking
assumptions. For models with one discrete rate, the code generator does not produce scheduling
code because there is only a single rate to execute. Use this technique for a single-rate application
when you have one periodic runnable.

The model handles transitions between the asynchronous and discrete rates of the connected
runnables with the two Rate Transition blocks. The Rate Transition block parameter Ensure
deterministic data transfer is cleared to facilitate integration into an AUTOSAR run-time
environment.

Generate Code and Report (Embedded Coder)

If you have Simulink Coder and Embedded Coder software, generate code and a code generation
report. The example model generates a report.

Generated code complies with AUTOSAR so that you can schedule the code with the AUTOSAR run-
time environment.

Review Generated Code

In the code generation report, review the generated code.

2 Modeling Patterns for AUTOSAR Components

2-14

• autosar_swc_fcncalls.c contains entry points for the code that implements the model
algorithm. This file includes the rate scheduling code.

• autosar_swc_fcncalls.h declares model data structures and a public interface to the model
entry points and data structures.

• autosar_swc_fcncalls_private.h contains local define constants and local data required
by the model and subsystems.

• autosar_swc_fcncalls_types.h provides forward declarations for the real-time model data
structure and the parameters data structure.

• rtwtypes.h defines data types, structures, and macros that the generated code requires.
• autosar_swc_fcncalls_component.arxml, autosar_swc_fcncalls_datatype.arxml,

autosar_swc_fcncalls_implementation.arxml, and
autosar_swc_fcncalls_interface.arxml contain elements and objects that represent
AUTOSAR software components, ports, interfaces, data types, and packages. You integrate
ARXML files into an AUTOSAR run-time environment. You can import ARXML files into the
Simulink environment by using the AUTOSAR ARXML importer tool.

• Compiler.h, Platform_Types.h, Rte_ASWC.h, Rte_Type.h, and Std_Types.h contain stub
implementations of AUTOSAR run-time environment functions. Use these files to test the
generated code in Simulink, for example, in software-in-the-loop (SIL) or processor-in-the-loop
(PIL) simulations of the component under test.

Code Interface

Open and review the Code Interface Report. This information is captured in the ARXML files. The
run-time environment generator uses the ARXML descriptions to interface the code into an AUTOSAR
run-time environment.

Input port:

• Require port, interface: sender-receiver of type real-T of 1 dimension

Entry-point functions:

• Initialization entry-point function, void Runnable_Initialize(void). At startup, call this
function once.

• Simulink function, void Runnable_1s(void). Call this function periodically at the fastest rate
in the model. For this model, call the function every second. To achieve real-time execution, attach
this function to a timer.

• Exported function, void Runnable_Trigger(void). Call this function at any time from an
external trigger.

Output port:

• Provide port, interface: sender-receiver of type real-T of 1 dimension

Multiple Runnables Configured As Function-Call Subsystem and Simulink Function

Open the example model autosar_swc_slfcns.slx.

open_system('autosar_swc_slfcns')

The model shows the implementation of an AUTOSAR atomic software component (ASWC). The
model includes one periodic rate runnable, Runnable_1s, that uses a function-call subsystem, SS1.

 Modeling Patterns for AUTOSAR Runnables

2-15

The model also includes a Simulink function, readData, to provide a value (CurVal) to clients that
request it.

The model includes an Initialize Function block, which initializes the unit delay in subsystem
RollingCounter to a value of 0.

To display color-coded sample rates with annotations and a legend, on the Debug tab, select
Diagnostics > Information Overlays > Colors.

Use function-call subsystems:

• When it is difficult or not possible to specify system events in a Simulink model.
• To achieve complex multirate scheduling of runnables. Model each rate as a separate function-call

subsystem.

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Fixed-step size (fundamental sample time) set to 1.
• Solver > Treat each discrete rate as a separate task selected.

Scheduling

In the model window, enable sample time color-coding by selecting the Debug tab and selecting
Diagnostics > Information Overlays > Colors. The sample time legend shows the implicit rate
grouping. Red identifies the discrete rate. Magenta identifies rates inherited from exported functions,
indicating their execution is outside the context of Simulink scheduling.

Your execution framework must schedule the generated function code and handle data transfers
between functions.

Generate Code and Report (Embedded Coder)

2 Modeling Patterns for AUTOSAR Components

2-16

If you have Simulink Coder and Embedded Coder software, generate code and a code generation
report. The example model generates a report.

The code generator:

• Produces an AUTOSAR runnable for the function-call subsystem at the root level of the model.
• Implements signal connections between runnables as AUTOSAR inter-runnable variables (IRVs).

Generated code complies with AUTOSAR so that you can schedule the code with the AUTOSAR run-
time environment.

Review Generated Code

In the code generation report, review the generated code.

• autosar_swc_slfcns.c contains entry points for the code that implements the model
algorithm. This file includes the rate scheduling code.

• autosar_swc_slfcns.h declares model data structures and a public interface to the model
entry points and data structures.

• autosar_swc_slfcns_private.h contains local define constants and local data required by
the model and subsystems.

• autosar_swc_slfcns_types.h provides forward declarations for the real-time model data
structure and the parameters data structure.

• readData_private.h contains local define constants and local data required by the Simulink
function.

• rtwtypes.h defines data types, structures, and macros that the generated code requires.
• autosar_swc_slfcns_component.arxml, autosar_swc_slfcns_datatype.arxml,

autosar_swc_slfcns_implementation.arxml, and
autosar_swc_slfcns_interface.arxml contain elements and objects that represent
AUTOSAR software components, ports, interfaces, data types, and packages. You integrate
ARXML files into an AUTOSAR run-time environment. You can import ARXML files into the
Simulink environment by using the AUTOSAR ARXML importer tool.

• Compiler.h, Platform_Types.h, Rte_ASWC.h, Rte_Type.h, and Std_Types.h contain stub
implementations of AUTOSAR run-time environment functions. Use these files to test the
generated code in Simulink, for example, in software-in-the-loop (SIL) or processor-in-the-loop
(PIL) simulations of the component under test.

Code Interface

Open and review the Code Interface Report. This information is captured in the ARXML files. The
run-time environment generator uses the ARXML descriptions to interface the code into an AUTOSAR
run-time environment.

Input ports:

• Require port, interface: sender-receiver of type uint16-T of 1 dimension
• Require port, interface: sender-receiver of type real-T of 1 dimension

Entry-point functions:

• Initialization entry-point function, void Runnable_Init(void). At startup, call this function
once.

 Modeling Patterns for AUTOSAR Runnables

2-17

• Exported function, void Runnable_1s(void). Call this function periodically, every second.
• Simulink function, Std_ReturnType readData(real_T Data[2]). Call this function at any

time.

Output ports:

• Provide port, interface: sender-receiver of type uint16-T of 1 dimension

Related Links

• “Model AUTOSAR Software Components” on page 2-3
• “Component Creation”
• “Code Generation”

2 Modeling Patterns for AUTOSAR Components

2-18

Model AUTOSAR Runnables Using Exported Functions

Use Simulink® exported functions to model AUTOSAR runnables.

Multiple Periodic Runnables Configured for Function Export

Open the example model autosar_swc_expfcns.slx.

open_system('autosar_swc_expfcns')

The model shows the implementation of an AUTOSAR atomic software component (ASWC) using
export-function modeling. Export-function models are Simulink models that generate code for
independent functions. You can integrate the independent function code with an external
environment and scheduler. Functions typically are defined using Function-Call Subsystem and
Simulink Function blocks.

This model implements three AUTOSAR periodic runnables using Function-Call Subsystem blocks
that have periodic rates. The runnables have sample rates of 1 second, 1 second, and 10 seconds,
respectively. To display color coded sample rates with annotations and a legend, on the Debug tab,
select Diagnostics > Information Overlays > Colors.

Simulink signal lines model AUTOSAR inter-runnable variables (IRVs), which connect the runnables.

Generate AUTOSAR Component Code and XML Descriptions (Embedded Coder)

If you have Simulink Coder and Embedded Coder software, you can generate algorithmic C code and
AUTOSAR XML (ARXML) component descriptions. You can test the generated code in Simulink or
integrate the code and descriptions into an AUTOSAR run-time environment.

 Model AUTOSAR Runnables Using Exported Functions

2-19

For example, to build the autosar_swc_expfcns component model, open the model. Press Ctrl+B
or enter the MATLAB command slbuild('autosar_swc_expfcns'). When the build completes, a
code generation report opens.

In the code generation report, select the Code Interface Report section, and examine the Entry-
Point Functions table.

In the generated code, each root-level function-call Inport block generates a void-void function. From
generated file autosar_swc_expfcns.c, here is the generated code for Runnable1.

2 Modeling Patterns for AUTOSAR Components

2-20

Related Links

“Export-Function Models Overview”

 Model AUTOSAR Runnables Using Exported Functions

2-21

Model AUTOSAR Communication
In Simulink, for the Classic Platform, you can model AUTOSAR sender-receiver (S-R), client-server
(C-S), mode-switch (M-S), nonvolatile (NV) data, parameter, and trigger communication.

In this section...
“About AUTOSAR Communication” on page 2-22
“Sender-Receiver Interface” on page 2-23
“Queued Sender-Receiver Interface” on page 2-24
“Client-Server Interface” on page 2-25
“Mode-Switch Interface” on page 2-26
“Nonvolatile Data Interface” on page 2-30
“Parameter Interface” on page 2-30
“Trigger Interface” on page 2-31

About AUTOSAR Communication
AUTOSAR software components provide well-defined connection points called ports. There are three
types of AUTOSAR ports:

• Require (In)
• Provide (Out)
• Combined Provide-Require (InOut — introduced in AUTOSAR schema version 4.1)

AUTOSAR ports can reference the following kinds of interfaces:

• Sender-Receiver
• Client-Server
• Mode-Switch
• Nonvolatile Data
• Parameter
• Trigger

The following figure shows an AUTOSAR software component with four ports representing the port
and interface combinations for Sender-Receiver and Client-Server interfaces.

A Require port that references a Mode-Switch interface is called a mode-receiver port.

2 Modeling Patterns for AUTOSAR Components

2-22

Sender-Receiver Interface
In AUTOSAR port-based sender-receiver (S-R) communication, AUTOSAR software components read
and write data to other components or services. To implement S-R communication, AUTOSAR
software components define:

• An AUTOSAR sender-receiver interface with data elements.
• AUTOSAR provide and require ports that send and receive data.

In Simulink, you can:

1 Create AUTOSAR S-R interfaces and ports by using the AUTOSAR Dictionary.
2 Model AUTOSAR provide and require ports by using Simulink root-level outports and inports.
3 Map the outports and inports to AUTOSAR provide and require ports by using the Code

Mappings editor.

A Sender-Receiver Interface consists of one or more data elements. Although a Require, Provide,
or Provide-Require port can reference a Sender-Receiver Interface, the AUTOSAR software
component does not necessarily access all of the data elements. For example, consider the following
figure.

The AUTOSAR software component has a Require and Provide port that references the same
Sender-Receiver Interface, Interface1. Although this interface contains data elements DE1, DE2,
DE3, DE4, and DE5, the component does not utilize all of the data elements.

The following figure is an example of how you model, in Simulink, an AUTOSAR software component
that accesses data elements.

ASWC accesses data elements DE1 and DE2. You model data element access as follows:

 Model AUTOSAR Communication

2-23

• For Require ports, use Simulink inports. For example, RPort1_DE1 and RPort1_DE2.
• For Provide ports, use Simulink outports. For example, PPort1_DE1 and PPort1_DE2.
• For Provide-Require ports (schema 4.1 or higher), use a Simulink inport and outport pair with

matching data type, dimension, and signal type. For more information, see “Configure AUTOSAR
Provide-Require Port” on page 4-96.

ErrorStatus is a value that the AUTOSAR Runtime Environment (RTE) returns to indicate errors that
the communication system detects for each data element. You can use a Simulink inport to model
error status, for example, RPort1_DE1 (ErrorStatus).

Use the AUTOSAR Dictionary and the Code Mappings editor to specify the AUTOSAR settings for
each inport and outport. For more information, see “Configure AUTOSAR Sender-Receiver
Communication” on page 4-95.

Queued Sender-Receiver Interface
In AUTOSAR queued sender-receiver (S-R) communication, AUTOSAR software components read and
write data to other components or services. Data sent by an AUTOSAR sender software component is
added to a queue provided by the AUTOSAR Runtime Environment (RTE). Newly received data does
not overwrite existing unread data. Later, a receiver software component reads the data from the
queue.

To implement queued S-R communication, AUTOSAR software components define:

• An AUTOSAR sender-receiver interface with data elements.
• AUTOSAR provide and require ports that send and receive queued data.

In Simulink, you can:

1 Create AUTOSAR queued S-R interfaces and ports by using the AUTOSAR Dictionary.
2 Model AUTOSAR provide and require ports by using Simulink root-level outports and inports.
3 Map the outports and inports to AUTOSAR provide and require ports by using the Code

Mappings editor. Set the AUTOSAR data access modes to QueuedExplicitSend or
QueuedExplicitReceive.

To model sending and receiving AUTOSAR data using a queue, use Simulink Send and Receive
blocks. If your queued S-R communication implementation involves states or requires decision logic,
use Stateflow® charts. You can handle errors that occur when the queue is empty or full. You can
specify the size of the queue. For more information, see “Simulink Messages Overview”.

You can simulate AUTOSAR queued sender-receiver (S-R) communication between component
models, for example, in a composition-level simulation. Data senders and receivers can run at
different rates. Multiple data senders can communicate with a single data receiver.

2 Modeling Patterns for AUTOSAR Components

2-24

To get started, you can import components with queued S-R interfaces and ports from ARXML files
into Simulink, or use Simulink to create the interfaces and ports. For more information, see
“Configure AUTOSAR Queued Sender-Receiver Communication” on page 4-111.

Client-Server Interface
AUTOSAR allows client-server communication between:

• Application software components
• An application software component and Basic Software

An AUTOSAR Client-Server Interface defines the interaction between a software component that
provides the interface and a software component that requires the interface. The component that
provides the interface is the server. The component that requires the interface is the client.

To model AUTOSAR clients and servers in Simulink, for simulation and code generation:

• To model AUTOSAR servers, use Simulink Function blocks at the root level of a model.
• To model AUTOSAR client invocations, use Function Caller blocks.
• Use the function-call-based modeling style to create interconnected Simulink functions, function-

calls, and root model inports and outports at the top level of a model.

This diagram illustrates a function-call framework in which Simulink Function blocks model
AUTOSAR server runnables, Function Caller blocks model AUTOSAR client invocations, and Simulink
data transfer lines model AUTOSAR inter-runnable variables (IRVs).

 Model AUTOSAR Communication

2-25

The high-level workflow for developing AUTOSAR clients and servers in Simulink is:

1 Model server functions and caller blocks in Simulink. For example, create Simulink Function
blocks at the root level of a model, with corresponding Function Caller blocks that call the
functions. Use the Simulink toolset to simulate and develop the blocks.

2 In the context of a model configured for AUTOSAR, map and configure the Simulink functions to
AUTOSAR server runnables. Validate the configuration, simulate, and generate C code and
ARXML files from the model.

3 In the context of another model configured for AUTOSAR, map and configure function caller
blocks to AUTOSAR client ports and AUTOSAR operations. Validate the configuration, simulate,
and generate C code and ARXML files from the model.

4 Integrate the generated C code into a test framework for testing, for example, with SIL
simulation. (Ultimately, the generated C code and ARXML files are integrated into the AUTOSAR
Runtime Environment (RTE).)

For more information, see “Configure AUTOSAR Client-Server Communication” on page 4-142.

Mode-Switch Interface
AUTOSAR mode-switch (M-S) communication relies on a mode manager and connected mode users.
The mode manager is an authoritative source for software components to query the current mode and
to receive notification when the mode changes. A mode manager can be provided by AUTOSAR Basic
Software (BSW) or implemented as an AUTOSAR software component. A mode manager implemented
as a software component is called an application mode manager. A software component that queries
the mode manager and receives notifications of mode changes is a mode user.

• “Mode User” on page 2-27
• “Application Mode Manager” on page 2-29

2 Modeling Patterns for AUTOSAR Components

2-26

Mode User

To model an AUTOSAR mode user software component in Simulink:

• Create an AUTOSAR mode-switch interface.
• Create an AUTOSAR mode receiver port and map it to a Simulink inport.
• For an initialization or other AUTOSAR runnable in the model, specify a mode-switch event to

trigger the runnable.

To model an AUTOSAR software component mode-receiver port, general steps can include:

1 Declare a mode declaration group — a group of mode values — using Simulink enumeration. For
example, you could create an enumerated type mdgModes, with enumerated values
MANUAL_ADJUST and AUTO_ADJUST. Specify the storage type as an unsigned integer.
Simulink.defineIntEnumType('mdgModes', ...
 {'MANUAL_ADJUST', 'AUTO_ADJUST'}, ...
 [18 28], ...
 'Description', 'Type definition of mdgModes.', ...
 'HeaderFile', 'Rte_Type.h', ...
 'DefaultValue', 'MANUAL_ADJUST', ...
 'AddClassNameToEnumNames', false,...
 'StorageType', 'uint16'...
);

2 Apply the enumeration data type to a Simulink inport that represents an AUTOSAR mode-
receiver port. In this Inport block dialog box, enumerated type mdgModes is specified as the
inport data type.

 Model AUTOSAR Communication

2-27

3 To specify the mapping of the Simulink inport to the AUTOSAR mode-receiver port, use the Code
Mappings editor (or equivalent AUTOSAR map functions).

In the following example, in the Inports tab of the Code Mappings editor, Simulink inport
mode_receiver is mapped to AUTOSAR mode-receiver port current_mode and AUTOSAR
element mgMirrorAdjust.

To specify a mode-switch event to trigger an initialize runnable or exported runnable, general steps
can include:

1 To edit, add, or remove AUTOSAR mode-switch interfaces and mode-receiver ports, use the
AUTOSAR Dictionary (or equivalent AUTOSAR property functions).

2 In your model, choose or add a runnable that you want a mode-switch event to activate.
3 In the Runnables view of the AUTOSAR Dictionary, select the runnable that you want a mode-

switch event to activate. Configure the event. In the following example, a mode-switch event is
added for Runnable_Auto, and configured to activate on entry (versus on exit or on transition).
It is mapped to a previously configured mode-receiver port and a mode declaration value that is
valid for the selected port.

2 Modeling Patterns for AUTOSAR Components

2-28

For more information, see “Configure AUTOSAR Mode-Switch Communication” on page 4-162.

Application Mode Manager

To model an application mode manager software component in Simulink, use an AUTOSAR mode
sender port. Mode sender ports output a mode switch to connected mode user components. For
example, here is an application mode manager, modeled in Simulink, that uses a mode sender port to
output the current value of EngineMode.

You model the mode sender port as a model root outport, which is mapped to an AUTOSAR mode
sender port and a mode-switch (M-S) interface. The outport data type is an enumeration class with an
unsigned integer storage type, representing an AUTOSAR mode declaration group.

In Simulink, you can:

• Import AUTOSAR mode-switch communication elements from ARXML files.

• The software imports ModeSwitchPoints, ModeSwitchInterfaces, and ModeDeclarationGroups.
• For each AUTOSAR provider port that references an M-S interface, the importer creates a root

outport with ModeSend data access and with an AUTOSAR mode declaration group
enumeration class.

• The importer maps the model outport to an AUTOSAR mode sender port with an M-S interface.

 Model AUTOSAR Communication

2-29

• Create AUTOSAR mode-switch communication elements.

• Create a model root outport, and set the outport data type to an enumeration class that
represents an AUTOSAR mode declaration group.

• Create an AUTOSAR mode sender port with an associated M-S interface.
• In the Code Mappings editor, set the outport data access mode to ModeSend, and map the

outport to the AUTOSAR mode sender port.
• Generate ARXML files and C code for AUTOSAR mode sender ports and related AUTOSAR M-S

communication elements.

• The ARXML files include referenced ModeSwitchPoints, ModeSwitchInterfaces, and
ModeDeclarationGroups.

• The C code includes Rte_Switch API calls to communicate mode switches to other software
components.

For more information, see “Configure AUTOSAR Mode-Switch Communication” on page 4-162.

Nonvolatile Data Interface
The AUTOSAR standard defines port-based nonvolatile (NV) data communication, in which an
AUTOSAR software component reads and writes data to AUTOSAR nonvolatile components. To
implement NV data communication, AUTOSAR software components define provide and require ports
that send and receive NV data. For more information about modeling software component access to
AUTOSAR nonvolatile memory, see “Model AUTOSAR Nonvolatile Memory” on page 2-41.

In Simulink, you can:

• Import AUTOSAR NV data interfaces and ports from ARXML files.
• Create AUTOSAR NV interfaces and ports, and map Simulink inports and outports to AUTOSAR

NV ports.

You model AUTOSAR NV ports with Simulink inports and outports, in the same manner described
in “Sender-Receiver Interface” on page 2-23.

• Generate C code and ARXML files for AUTOSAR NV data interfaces and ports.

For more information, see “Configure AUTOSAR Nonvolatile Data Communication” on page 4-169.

Parameter Interface
The AUTOSAR standard defines port-based parameters for parameter communication. AUTOSAR
parameter communication relies on a parameter software component (ParameterSwComponent)
and one or more atomic software components that require port-based access to parameter data. The
ParameterSwComponent represents memory containing AUTOSAR parameters and provides
parameter data to connected atomic software components.

In Simulink, you can model the receiver portion of AUTOSAR port-based parameter communication.
In an AUTOSAR atomic software component, you create a parameter interface with data elements
and a parameter receiver port.

For more information, see “Configure AUTOSAR Port Parameters for Communication with Parameter
Component” on page 4-171.

2 Modeling Patterns for AUTOSAR Components

2-30

Trigger Interface
The AUTOSAR standard defines external trigger event communication, in which an AUTOSAR
software component or service signals an external trigger occurred event
(ExternalTriggerOccurredEvent) to another component. The receiving component activates a
runnable in response to the event.

In Simulink, you can model the receiver portion of AUTOSAR external trigger event communication.
In a component that you want to react to an external trigger, you create a trigger interface, a trigger
receiver port to receive an ExternalTriggerOccurredEvent, and a runnable that the event
activates.

For more information, see “Configure Receiver for AUTOSAR External Trigger Event Communication”
on page 4-175.

See Also

Related Examples
• “Configure AUTOSAR Sender-Receiver Communication” on page 4-95
• “Configure AUTOSAR Queued Sender-Receiver Communication” on page 4-111
• “Configure AUTOSAR Client-Server Communication” on page 4-142
• “Configure AUTOSAR Mode-Switch Communication” on page 4-162
• “Configure AUTOSAR Nonvolatile Data Communication” on page 4-169
• “Configure AUTOSAR Port Parameters for Communication with Parameter Component” on page

4-171
• “Configure Receiver for AUTOSAR External Trigger Event Communication” on page 4-175

More About
• “AUTOSAR Component Configuration” on page 4-3

 Model AUTOSAR Communication

2-31

Model AUTOSAR Component Behavior
In Simulink, you can model AUTOSAR component behavior, including behavior of runnables, events,
and inter-runnable variables.

In this section...
“AUTOSAR Elements for Modeling Component Behavior” on page 2-32
“Runnables” on page 2-32
“Inter-Runnable Variables” on page 2-33
“Included Data Type Sets” on page 2-33
“System Constants” on page 2-34
“Per-Instance Memory” on page 2-35
“Static and Constant Memory” on page 2-35
“Shared and Per-Instance Parameters” on page 2-36
“Port Parameters” on page 2-36

AUTOSAR Elements for Modeling Component Behavior
To model AUTOSAR component behavior, you model AUTOSAR elements that describe scheduling
and resource sharing aspects of a component. The AUTOSAR elements that bear on component
behavior include:

• Runnables and the events to which they respond
• Inter-runnable variables, used to communicate data between runnables in the same component
• Included data type sets, which provide component internal data types
• System constants, used to specify system-level constant values that are available for reference in

component algorithms
• Per-instance memory, used to specify instance-specific global memory within a component
• Static and constant memory, for access to global data and parameter values within a component
• Shared and per-instance parameters, for access to component internal parameter data
• Port parameters, for port-based access to parameter data

This topic describes how to model the AUTOSAR elements that help you define component behavior.

Runnables
AUTOSAR software components contain runnables that are directly or indirectly scheduled by the
underlying AUTOSAR operating system.

This figure shows an AUTOSAR software component with two runnables, Runnable 1 and Runnable
2. RTEEvents, events generated by the AUTOSAR Runtime Environment (RTE), trigger each
runnable. For example, TimingEvent is an RTEEvent that is generated periodically.

2 Modeling Patterns for AUTOSAR Components

2-32

A component also can contain a single runnable, represented by a model, and can be single-rate or
multirate.

Note The software generates an additional runnable for the initialization function regardless of the
modeling pattern.

For more information, see “Configure AUTOSAR Runnables and Events” on page 4-178.

Inter-Runnable Variables
In AUTOSAR, inter-runnable variables are used to communicate data between runnables in the same
component. You define these variables in a Simulink model by the signal lines that connect
subsystems (runnables). For example, in the following figure, irv1, irv2, irv3, and irv4 are inter-
runnable variables.

You can specify the names and data access modes of the inter-runnable variables that you export.

Included Data Type Sets
In an AUTOSAR software component model, you can import and export an ARXML description of an
AUTOSAR included data type set (IncludedDataTypeSet). An IncludedDataTypeSet is defined
as part of the internal behavior of a software component. It contains references to AUTOSAR data
type definitions that are internal to a component and not present in the component interface
descriptions. The referenced internal data type definitions can be shared among multiple software
components, as described in “Import and Reference Shared AUTOSAR Element Definitions” on page
3-29.

If you import ARXML files that contain an IncludedDataTypeSet description into Simulink, the
importer creates internal data types in the AUTOSAR component model and maps them to header file
Rte_Type.h.

 Model AUTOSAR Component Behavior

2-33

In an AUTOSAR component model, to configure internal data types for export in an ARXML
IncludedDataTypeSet description, map the internal data types to header file Rte_Type.h.
Building the component model:

• Exports an ARXML IncludedDataTypeSet description for internal data types that are used in
the model code.

• Generates Rte_Type.h header file entries for the internal data types.

For AUTOSAR IncludedDataTypeSet export, Simulink supports these data types:

• Numeric
• Alias
• Bus
• Fixed-point
• Enumerated

Literal prefixes for enumeration literals are handled differently between imported and created
IncludedDataTypeSets:

• If you import an IncludedDataTypeSet that defines a LiteralPrefix as a common prefix for
enumeration literals, the importer preserves the LiteralPrefix for export and round trip of the
IncludedDataTypeSet.

• If you configure internal data types in a component model for export in an AUTOSAR
IncludedDataTypeSet, the exporter generates the data types in an IncludedDataTypeSet
with an empty LiteralPrefix.

For more information, see “Configure Internal Data Types for AUTOSAR IncludedDataTypeSets” on
page 4-199.

System Constants
AUTOSAR system constants (SwSystemConstants) specify system-level constant values that are
available for reference in component algorithms. To add AUTOSAR system constants to your model,
you can:

• Import them from ARXML files.
• Create them in Simulink by using AUTOSAR.Parameter objects that have Storage class set to

SystemConstant.

You can then reference the AUTOSAR system constants in Simulink algorithms. For example, you can
reference a system constant in a Gain block, or in a condition formula inside a variant subsystem or
model reference.

When you reference an AUTOSAR system constant in your model:

• Exported ARXML files contain a corresponding SwSystemConstant and a corresponding
AUTOSAR variation point proxy (VariationPointProxy) that references the
SwSystemConstant. If you generate modular ARXML files, the SwSystemConstant is located in
modelname_datatype.arxml and the VariationPointProxy is located in
modelname_component.arxml.

• Generated C code uses the generated VariationPointProxy in places where the model uses
the SwSystemConstant.

2 Modeling Patterns for AUTOSAR Components

2-34

For an example of an AUTOSAR system constant that represents a conditional value associated with
variant condition logic, see “Configure Variants for AUTOSAR Runnable Implementations” on page 4-
220.

Per-Instance Memory
AUTOSAR supports per-instance memory, which allows you to specify instance-specific global
memory within a software component. An AUTOSAR run-time environment generator allocates this
memory and provides an API through which you access this memory.

Per-instance memory can be AUTOSAR-typed or C-typed. AUTOSAR-typed per-instance memory
(arTypedPerInstanceMemory) is described using AUTOSAR data types rather than C types. When
exported in ARXML files, arTypedPerInstanceMemory allows the use of calibration and
measurement tools to monitor the global variable corresponding to per-instance memory.

AUTOSAR also allows you to use per-instance memory as a RAM mirror for data in nonvolatile RAM
(NVRAM). You can access and use NVRAM in your AUTOSAR application. For more information about
modeling software component access to AUTOSAR nonvolatile memory, see “Model AUTOSAR
Nonvolatile Memory” on page 2-41.

To add AUTOSAR per-instance memory to your model, you can:

• Import per-instance memory definitions from ARXML files.
• Create model content that represents per-instance memory.

To model arTypedPerInstanceMemory, you can use block signals, discrete states, or data stores in
your AUTOSAR model:

• To use block signals and discrete states, use the Code Mappings editor, Signals/States tab, to
select a signal or state and map it to arTypedPerInstanceMemory. To view and modify

AUTOSAR code and calibration attributes for the per-instance memory, click the icon.
• To use data stores, use the Code Mappings editor, Data Stores tab, to select a data store and map

it to arTypedPerInstanceMemory. To view and modify AUTOSAR code and calibration

attributes for the per-instance memory, click the icon.

For more information, see “Configure AUTOSAR Per-Instance Memory” on page 4-201.

Static and Constant Memory
AUTOSAR supports static memory (StaticMemory) and constant memory (ConstantMemory) data.
Static memory corresponds to Simulink internal global signals. Constant memory corresponds to
Simulink internal global parameters. In Simulink, you can import and export ARXML descriptions of
AUTOSAR static and constant memory. When exported in ARXML files, static memory and constant
memory allow the use of calibration and measurement tools to monitor the internal memory data.

To model AUTOSAR static memory in Simulink, use the Code Mappings editor, Signals/States or
Data Stores tab. Select a signal, state, or data store and map it to StaticMemory. To view and

modify AUTOSAR code and calibration attributes for the static memory, click the icon.

 Model AUTOSAR Component Behavior

2-35

To model AUTOSAR constant memory in Simulink, use the Code Mappings editor, Parameters tab, to
select a parameter and map it to ConstantMemory. To view and modify AUTOSAR code and

calibration attributes for the constant memory, click the icon.

For more information, see “Configure AUTOSAR Static Memory” on page 4-206 and “Configure
AUTOSAR Constant Memory” on page 4-210.

Shared and Per-Instance Parameters
AUTOSAR supports shared parameters (SharedParameters) and per-instance parameters
(PerInstanceParameters) for use in software components that are potentially instantiated multiple
times. Shared parameter values are shared among all instances of a component. Per-instance
parameter values are unique and private to each component instance.

In Simulink, you can import and export ARXML descriptions of AUTOSAR shared and per-instance
parameters. When exported in ARXML files, shared and per-instance parameters enable the use of
calibration and measurement tools to monitor component parameters.

To model an AUTOSAR shared parameter in Simulink, configure a model workspace parameter that is
not a model argument (that is, not unique to each instance of a multi-instance model). For example, in
the Model Explorer view of the parameter, clear the Argument property. In the Code Mappings
editor, Parameters tab, select the parameter and map it to parameter type SharedParameter. To

view and modify AUTOSAR code and calibration attributes for the shared parameter, click the
icon.

To model an AUTOSAR per-instance parameter in Simulink, configure a model workspace parameter
that is a model argument (that is, unique to each instance of a multi-instance model). For example, in
the Model Explorer view of the parameter, select the Argument property. In the Code Mappings
editor, Parameters tab, select the parameter and map it to parameter PerInstanceParameter. To
view and modify AUTOSAR code and calibration attributes for the per-instance parameter, click the

 icon.

For more information, see “Configure AUTOSAR Shared or Per-Instance Parameters” on page 4-212.

Port Parameters
The AUTOSAR standard defines port-based parameters for parameter communication. AUTOSAR
parameter communication relies on a parameter software component (ParameterSwComponent)
and one or more atomic software components that require port-based access to parameter data. The
ParameterSwComponent represents memory containing AUTOSAR parameters and provides
parameter data to connected atomic software components.

In Simulink, you can model the receiver side of AUTOSAR parameter communication. By importing
ARXML descriptions or configuring a software component model, you can model:

• AUTOSAR parameter receiver component, which communicates with a ParameterSwComponent
to receive parameter data.

• AUTOSAR parameter interface, which contains parameter data elements. The data elements map
to parameter or lookup table objects in the model workspace.

2 Modeling Patterns for AUTOSAR Components

2-36

• AUTOSAR parameter receiver port used to communicate with the ParameterSwComponent.

When you generate code for the AUTOSAR parameter receiver component:

• The exported ARXML files contain descriptions of the parameter receiver component, parameter
interface, parameter data elements, and parameter receiver port.

• The generated C code contains AUTOSAR port parameter Rte function calls.

At run time, the software can access the parameter data elements as port-based parameters.

Because port parameter data is scoped to the model workspace and the AUTOSAR component:

• Different components can use the same parameter names without naming conflicts.
• An AUTOSAR composition can contain multiple instances of a parameter receiver component,

each with instance-specific port parameter data values.

For more information, see “Configure AUTOSAR Port Parameters for Communication with Parameter
Component” on page 4-171.

See Also
Data Store Memory

Related Examples
• “Configure AUTOSAR Runnables and Events” on page 4-178
• “Configure Variants for AUTOSAR Runnable Implementations” on page 4-220
• “Configure Internal Data Types for AUTOSAR IncludedDataTypeSets” on page 4-199
• “Configure AUTOSAR Per-Instance Memory” on page 4-201
• “Configure AUTOSAR Static Memory” on page 4-206
• “Configure AUTOSAR Constant Memory” on page 4-210
• “Configure AUTOSAR Shared or Per-Instance Parameters” on page 4-212
• “Configure AUTOSAR Port Parameters for Communication with Parameter Component” on page

4-171

More About
• “AUTOSAR Component Configuration” on page 4-3

 Model AUTOSAR Component Behavior

2-37

Model AUTOSAR Variants
AUTOSAR software components use variants to enable or disable AUTOSAR interfaces or
implementations in the execution path, based on defined conditions. Variation points in a component
present a choice between two or more variants. Components can:

• Enable or disable an AUTOSAR port or runnable.
• Vary the implementation of an AUTOSAR runnable.
• Vary the array size of an AUTOSAR port.
• Specify predefined variants and system constant value sets for controlling variants in the

component.

In Simulink, you can:

• Import and export AUTOSAR ports and runnables with variants.
• Model AUTOSAR variants.

• To enable or disable an AUTOSAR port or runnable, use Variant Sink and Variant Source
blocks.

• To vary the implementation of an AUTOSAR runnable, use Variant Subsystem blocks.
• To vary the array size of an AUTOSAR port, use Simulink symbolic dimensions.

• Resolve modeled variants by using predefined variants and system constant value sets imported
from ARXML files.

AUTOSAR system constants serve as inputs to control component variation points. To model system
constants, use AUTOSAR.Parameter data objects.

In this section...
“Variants for Ports and Runnables” on page 2-38
“Variants for Runnable Implementations” on page 2-39
“Variants for Array Sizes” on page 2-39
“Predefined Variants and System Constant Value Sets” on page 2-40

Variants for Ports and Runnables
AUTOSAR software components can use VariationPoint elements to enable or disable AUTOSAR
elements, such as ports and runnables, based on defined conditions. In Simulink, you can:

• Import AUTOSAR ports and runnables with variation points.

The ARXML importer creates the required model elements, including Variant Sink and Variant
Source blocks to propagate variant conditions and AUTOSAR.Parameter data objects to
represent system constants with condition values.

• Model AUTOSAR elements with variation points.

• To define variant condition logic and propagate variant conditions, use Variant Sink and Variant
Source blocks.

• To model AUTOSAR system constants and define condition values, use AUTOSAR.Parameter
data objects with storage class SystemConstant.

2 Modeling Patterns for AUTOSAR Components

2-38

• Run validation on the AUTOSAR configuration. The validation software verifies that variant
conditions on Simulink blocks match the designed behavior from the imported ARXML files.

• Export AUTOSAR ports and runnables with variation points.

For more information, see “Configure Variants for AUTOSAR Ports and Runnables” on page 4-217.

Variants for Runnable Implementations
To vary the implementation of an AUTOSAR runnable, AUTOSAR software components can specify
variant condition logic inside a runnable. In Simulink, to model variant condition logic inside a
runnable:

• Use Variant Subsystem blocks to define variant implementations and their associated variant
condition logic.

• Use AUTOSAR.Parameter data objects to model AUTOSAR system constants and define condition
values.

For more information, see “Configure Variants for AUTOSAR Runnable Implementations” on page 4-
220.

Variants for Array Sizes
AUTOSAR software components can flexibly specify the dimensions of an AUTOSAR element, such as
a port, by using a symbolic reference to a system constant. The system constant defines the array size
of the port data type. The code generator supports models that include AUTOSAR elements with
variant (symbolic) array sizes.

In Simulink, you can:

• Import AUTOSAR elements with variant array sizes.

• The ARXML importer creates the required model elements, including AUTOSAR.Parameter
data objects with storage class SystemConstant, to represent the array size values.

• Each block that represents an AUTOSAR element with variant array sizes references
AUTOSAR.Parameter data objects to define its dimensions.

• Model AUTOSAR elements with variant array sizes.

• Create blocks that represent AUTOSAR elements.
• To represent array size values, add AUTOSAR.Parameter data objects with storage class

SystemConstant.
• To specify an array size for an AUTOSAR element, reference an AUTOSAR.Parameter data

object.
• Modify array size values in system constants between model simulations, without regenerating

code for simulation.
• Generate C code and ARXML files with symbols corresponding to variant array sizes.

For more information, see “Configure Dimension Variants for AUTOSAR Array Sizes” on page 4-225.

 Model AUTOSAR Variants

2-39

Predefined Variants and System Constant Value Sets
To define the values that control variation points in an AUTOSAR software component, components
use the following AUTOSAR elements:

• SwSystemconst — Defines a system constant that serves as an input to control a variation point.
• SwSystemconstantValueSet — Specifies a set of system constant values.
• PredefinedVariant — Describes a combination of system constant values, among potentially

multiple valid combinations, to apply to an AUTOSAR software component.

Suppose that you have an ARXML specification of an AUTOSAR software component. If the ARXML
files also define a PredefinedVariant or SwSystemconstantValueSets for controlling variation
points in the component, you can resolve the variation points at model creation time. Specify a
PredefinedVariant or SwSystemconstantValueSets with which the importer can initialize
SwSystemconst data.

After model creation, you can run simulations and generate code based on the combination of
variation point input values that you specified.

In Simulink, using the AUTOSAR property function createSystemConstants, you can redefine the
SwSystemconst data that controls variation points without recreating the model. You can run
simulations and generate code based on the revised combination of variation point input values.

Building the model exports previously imported PredefinedVariants and
SwSystemconstantValueSets to ARXML files.

For more information, see “Control AUTOSAR Variants with Predefined Value Combinations” on page
4-227.

See Also

Related Examples
• “Configure Variants for AUTOSAR Ports and Runnables” on page 4-217
• “Configure Variants for AUTOSAR Runnable Implementations” on page 4-220
• “Configure Dimension Variants for AUTOSAR Array Sizes” on page 4-225
• “Control AUTOSAR Variants with Predefined Value Combinations” on page 4-227

More About
• “AUTOSAR Component Configuration” on page 4-3

2 Modeling Patterns for AUTOSAR Components

2-40

Model AUTOSAR Nonvolatile Memory
The AUTOSAR standard defines implicit and explicit mechanisms by which an AUTOSAR software
component can read and write nonvolatile memory in an automotive system:

• Implicit access uses sender-receiver ports or data store memory blocks to access a copy of an
AUTOSAR nonvolatile memory block in RAM.

• Explicit access uses client-server calls to directly access an AUTOSAR nonvolatile memory block.

Implicit Access to AUTOSAR Nonvolatile Memory
Implicit access to AUTOSAR nonvolatile memory uses a startup event to begin shadowing or
mirroring a nonvolatile memory block in RAM. Using a RAM copy of nonvolatile memory can support
faster access.

1 During ECU power-up, when a startup event occurs, a background task copies a memory block
from nonvolatile memory space to RAM.

2 While the system runs, software components can access the nonvolatile data at RAM speed.
3 When a shutdown event occurs, before shutdown, a background task copies the shadowed or

mirrored memory block back to nonvolatile memory space.

To model implicit read and write access to nonvolatile memory in an AUTOSAR component model,
you configure either port-based nonvolatile (NV) data communication or an NVRAM mirror block.

In port-based NV data communication, an AUTOSAR software component reads and writes data to
AUTOSAR nonvolatile components. To implement NV data communication, AUTOSAR software
components define provide and require ports that send and receive NV data. In Simulink, you can:

• Import AUTOSAR NV data interfaces and ports from ARXML files.
• Create AUTOSAR NV interfaces and ports, and map Simulink inports and outports to AUTOSAR

NV ports.

You model AUTOSAR NV ports with Simulink inports and outports, in the same manner described
in “Sender-Receiver Interface” on page 2-23.

• Generate C code and ARXML files for AUTOSAR NV data interfaces and ports.

With port-based NV data communication, you can distribute or coordinate NV data access across
software components. For example, multiple components can read the same NV data from a
nonvolatile software component, while one component writes to it.

For more information, see “Configure AUTOSAR Nonvolatile Data Communication” on page 4-169.

To configure an NVRAM mirror block, an AUTOSAR software component maps a data store memory
block to AUTOSAR typed per-instance memory (ArTypedPerInstanceMemory) and selects the option
NeedsNVRAMAccess. This option indicates that the ArTypedPerInstanceMemory is a RAM mirror
block and requires service from the NVRAM Manager (NvM) manager module. In Simulink, you can:

• Import AUTOSAR NVRAM mirror blocks from ARXML files.
• Create model content that configures data store memory blocks as AUTOSAR NVRAM mirror

blocks.

 Model AUTOSAR Nonvolatile Memory

2-41

• Generate C code and ARXML files for AUTOSAR NVRAM mirror blocks. An AUTOSAR run-time
environment generator allocates the memory and provides an API through which the component
accesses the memory.

For more information, see “Configure AUTOSAR Per-Instance Memory” on page 4-201.

Explicit Access to AUTOSAR Nonvolatile Memory
For the AUTOSAR Classic Platform, the AUTOSAR standard defines important services as part of
Basic Software (BSW) that runs in the AUTOSAR Runtime Environment (RTE). Examples include
services provided by the NVRAM Manager and the Diagnostic Event Manager. In the AUTOSAR RTE,
AUTOSAR software components typically access BSW services using client-server communication.

Explicit access to AUTOSAR nonvolatile memory uses calls to the NVRAM Manager (NvM) service to
directly access AUTOSAR nonvolatile memory space. Explicit access can be used in response to
events, for example, air bag events, or at each time step, for example, for controllers that have no
shutdown sequence.

To support system-level modeling of AUTOSAR components and services, AUTOSAR Blockset
provides an AUTOSAR Basic Software block library. The library includes preconfigured Function
Caller blocks for modeling component calls to NVM service interfaces, including NvMAdminCaller
and NvMServiceCaller.

To implement client calls to AUTOSAR NVM service interfaces in your AUTOSAR software
component, you drag and drop Basic Software blocks into an AUTOSAR model. Each block has
prepopulated parameters, such as Client port name and Operation. If you modify the operation
selection, the software updates the block inputs and outputs to correspond.

To configure the added blocks in the AUTOSAR software component, click the Update button in
the Code Mappings editor view of the model. The software creates AUTOSAR client-service
interfaces, operations, and ports, and maps each Simulink function caller to an AUTOSAR client port
and operation.

For more information, see “Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28.

To simulate an AUTOSAR component model that calls BSW services, create a containing composition,
system, or harness model. In that containing model, provide a reference implementation of the NvM
service operations called by the component.

The AUTOSAR Basic Software block library includes an NVRAM Service Component block. The block
provides reference implementations NvM service operations. To support simulation of component
calls to the NvM service, include the blocks in the containing model. You can insert the blocks in
either of two ways:

• Automatically insert the blocks by creating a Simulink Test™ harness model.
• Manually insert the blocks into a containing composition, system, or harness model.

For more information, see “Configure AUTOSAR Basic Software Service Implementations for
Simulation” on page 7-33 and “Simulate AUTOSAR Basic Software Services and Run-Time
Environment” on page 7-36.

See Also
NvMAdminCaller | NvMServiceCaller | NVRAM Service Component

2 Modeling Patterns for AUTOSAR Components

2-42

Related Examples
• “Configure AUTOSAR Nonvolatile Data Communication” on page 4-169
• “Configure AUTOSAR Per-Instance Memory” on page 4-201
• “Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36

 Model AUTOSAR Nonvolatile Memory

2-43

Model AUTOSAR Data Types
The AUTOSAR standard defines platform data types for use by AUTOSAR software components. In
Simulink, you can model AUTOSAR data types used in elements such as data elements, operation
arguments, calibration parameters, measurement variables, and inter-runnable variables. If you
import an AUTOSAR component from ARXML files, Embedded Coder imports AUTOSAR data types
and creates the required corresponding Simulink data types. During code generation, Embedded
Coder exports ARXML descriptions for data types used in the component model and generates
AUTOSAR data types in C code.

In this section...
“About AUTOSAR Data Types” on page 2-44
“Enumerated Data Types” on page 2-45
“Structure Parameters” on page 2-46
“Data Types” on page 2-46
“CompuMethod Categories for Data Types” on page 2-49

About AUTOSAR Data Types
AUTOSAR specifies data types that apply to:

• Data elements of a sender-receiver Interface
• Operation arguments of a client-server Interface
• Calibration parameters
• Measurement variables
• Inter-runnable variables

The data types fall into two categories:

• Platform (primitive) data types, which allow a direct mapping to C intrinsic types.
• Composite data types, which map to C arrays and structures.

To model AUTOSAR platform data types, use corresponding Simulink data types.

AUTOSAR Platform Type Simulink Data Type
boolean boolean
float32 single
float64 double
sint8 int8
sint16 int16
sint32 int32
sint64 int64
uint8 uint8
uint16 uint16

2 Modeling Patterns for AUTOSAR Components

2-44

AUTOSAR Platform Type Simulink Data Type
uint32 uint32
uint64 uint64

AUTOSAR composite data types are arrays and records, which are represented in Simulink by wide
signals and bus objects, respectively. To configure a wide signal or bus object through Inport or
Outport blocks, use the Model Data Editor. On the Modeling tab, click Model Data Editor and
select the Inports/Outports tab. Select the Design view. From the list of inports and outports,
select the source block to configure.

The following figure shows how to specify a wide signal, which corresponds to an AUTOSAR
composite array.

The following figure shows how to specify a bus object, which corresponds to an AUTOSAR composite
record.

To specify the data types of data elements and arguments of an operation prototype, use the drop-
down list in the Data Type column. You can specify a Simulink built-in data type, such as boolean,
single, or int8, or enter an (alias) expression for data type. For example, the following figure
shows an alias sint8, corresponding to an AUTOSAR data type, in the Data Type column.

For more guidance in specifying the data type, you can use the Data Type Assistant on the Signal
Attributes pane of the Inport or Outport Block Parameters dialog box or in the Property Inspector.

Enumerated Data Types
AUTOSAR supports enumerated data types. For the import process, if there is a corresponding
Simulink enumerated data type, the software uses the data type. The software checks that the two
data types are consistent. However, if a corresponding Simulink data type is not found, the software
automatically creates the enumerated data type using the Simulink.defineIntEnumType class.
This automatic creation of data types is useful when you want to import a large quantity of
enumerated data types.

 Model AUTOSAR Data Types

2-45

Consider the following example:
<SHORT-NAME>BasicColors</SHORT-NAME>
 <COMPU-INTERNAL-TO-PHYS>
 <COMPU-SCALES>
 <COMPU-SCALE>
 <LOWER-LIMIT>0</LOWER-LIMIT>
 <UPPER-LIMIT>0</UPPER-LIMIT>
 <COMPU-CONST>
 <VT>Red</VT>

The software creates an enumerated data type using:
Simulink.defineIntEnumType('BasicColors', ...
 {'Red', 'Green', 'Blue'}, ...
 [0;1;2], ...
 'Description', 'Type definition of BasicColors.', ...
 'HeaderFile', 'Rte_Type.h', ...
 'AddClassNameToEnumNames', false);

Structure Parameters
Before exporting an AUTOSAR software component, specify the data types of structure parameters to
be Simulink.Bus objects. See “Control Field Data Types and Characteristics by Creating Parameter
Object”. Otherwise, the software displays the following behavior:

• When you validate the AUTOSAR configuration, the software issues a warning.
• When you build the model, the software defines each data type to be an anonymous struct and

generates a random, nondescriptive name for the data type.

When importing an AUTOSAR software component, if a parameter structure has a data type name
that corresponds to an anonymous struct, the software sets the data type to struct. However, if
the component has data elements that reference this anonymous struct data type, the software
generates an error.

Data Types
The AUTOSAR standard defines an approach to AUTOSAR data types in which base data types are
mapped to implementation data types and application data types. Application and implementation
data types separate application-level physical attributes, such as real-world range of values, data
structure, and physical semantics, from implementation-level attributes, such as stored-integer
minimum and maximum and specification of a primitive type (for example, integer, Boolean, or real).

The software supports AUTOSAR data types in Simulink originated and round-trip workflows:

• For AUTOSAR components originated in Simulink, the software generates AUTOSAR application,
implementation, and base types to preserve the information contained within Simulink data types.

2 Modeling Patterns for AUTOSAR Components

2-46

In the AUTOSAR package structure created for Simulink originated components:

• You can specify separate packages to aggregate elements that relate to data types, including
application data types, software base types, data type mapping sets, system constants, and
units.

• Implementation data types are aggregated in the main data types package.

For more information, see “Configure AUTOSAR Packages” on page 4-84.
• For round-trip workflows involving AUTOSAR components originated outside MATLAB, the

ARXML importer and exporter preserve data type information and mapping for each imported
AUTOSAR data type.

For information about mapping value constraints between AUTOSAR application data types and
Simulink data types, see “Application Data Type Physical Constraint Mapping” on page 2-49.

For AUTOSAR data types originated in Simulink, you can control some aspects of data type export.
For example, you can control when application data types are generated, or specify the AUTOSAR
package and short name exported for AUTOSAR data type mapping sets. For more information, see
“Configure AUTOSAR Data Types Export” on page 4-244.

• “AUTOSAR Data Types in Simulink Originated Workflow” on page 2-47
• “AUTOSAR Data Types in Round-Trip Workflow” on page 2-48
• “Application Data Type Physical Constraint Mapping” on page 2-49

AUTOSAR Data Types in Simulink Originated Workflow

In the Simulink originated (bottom-up) workflow, you create a Simulink model and export the model
as an AUTOSAR software component.

The software generates the application and implementation data types and base types to preserve the
information contained within the Simulink data types:

• For Simulink data types, the software generates implementation data types.
• For each fixed-point type, in addition to the implementation data type, the software generates an

application data type with the COMPU-METHOD-REF element to preserve scale and bias
information. This application data type is mapped to the implementation data type.

• For each Simulink.ValueType object, the software generates an application data type
reflecting the properties specified on the Simulink.ValueType object, including dimension, and
minimum and maximum values. This application data type is mapped to an implementation data
type.

Note The software does not support application data types for code generated from referenced
models.

 Model AUTOSAR Data Types

2-47

Simulink Data Type AUTOSAR XML
Implementation Type Application Type

Primitive (excluding fixed point), for
example, myInt16

Covers Boolean, integer, real
myInt16 = Simulink.AliasType;
myInt16.BaseType = 'int16';

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>myInt16</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
…

Not generated

Primitive (fixed point), for example,
myFixPt
myFixPt = Simulink.NumericType;
myFixPt.DataTypeMode = …;
myFixPt.IsAlias = true;

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>myFixPt</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
…

<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>myFixPt</SHORT-NAME>
<COMPU-METHOD-REF>…

Enumeration, for example, myEnum
Simulink.defineIntEnumType('myEnum',...
 {'Red','Green','Blue'},...
 [1;2;3],…);

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>myEnum</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<COMPU-METHOD>…

Not generated

Record, for example, myRecord
myRecord = Simulink.Bus;

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>myRecord</SHORT-NAME>
<CATEGORY>STRUCT</CATEGORY>
…

Not generated

Value types, for example, EngSpeed

EngSpeed = Simulink.ValueType;
EngSpeed.Min = 0;
EngSpeed.Max = 65535;
EngSpeed.DataType = 'uint32';

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>EngSpeed</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
…

<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>EngSpeed</SHORT-NAME>
<COMPU-METHOD-REF>…
<DATA-CONSTR-REF>…
…

AUTOSAR Data Types in Round-Trip Workflow

In the round-trip workflow, you first use the XML description generated by an AUTOSAR authoring
tool to import on page 3-13 an AUTOSAR software component into a model. Later, you generate
AUTOSAR C and XML code from the model.

If the data prototype references an application data type, the software stores application to
implementation data type mapping within the model and uses the application data type name to
define the Simulink data type.

For example, suppose that the authoring tool specifies an application data type:
ApplDT1

In this case, the software defines the following Simulink data type:
ImplDT1

AUTOSAR XML Simulink Data Type
Application Type Implementation Type
<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>myFixPt</SHORT-NAME>
<COMPU-METHOD-REF>…

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>myInt</SHORT-NAME>
…

myFixPt = Simulink.NumericType;
myFixPt.DataTypeMode = …;
myFixPt.IsAlias = true;

If the data prototype references an implementation data type, the software does not store mapping
information and uses the implementation data type name to define the Simulink data type.

2 Modeling Patterns for AUTOSAR Components

2-48

The software uses the application data types in simulations and the implementation data types for
code generation. When you re-export the AUTOSAR software component, the software uses the
stored information to provide the same mapping between the exported application and
implementation data types.

Application Data Type Physical Constraint Mapping

In models configured for AUTOSAR, the software maps minimum and maximum values for Simulink
data to the corresponding physical constraint values for AUTOSAR application data types.

• If you import ARXML files, the software imports PhysConstr values on ApplicationDataTypes
in the ARXML files to Min and Max values on the corresponding Simulink data objects and root-
level I/O signals.

• When you export ARXML files from a model, the software exports the Min and Max values
specified on Simulink data objects and root-level I/O signals to the corresponding
ApplicationDataType PhysConstrs in the ARXML files.

• Simulink data types with unspecified Min and Max correspond to AUTOSAR
ApplicationDataTypes with full-range constraints. For example:

• On import, if the PhysConstr values on an ApplicationDataType match the full lower and
upper limits in the InternalConstr for the associated ImplementationDataType, the
importer sets the Simulink Min and Max values to []. In those cases, Simulink implicitly
enforces the default lower and upper limits based on the type.

• On export, if the Simulink Min and Max values for a type are [], the software exports default
lower and upper limit values for that type (for example, 0 and 1 for a boolean based type) to
the ARXML PhysConstr description.

CompuMethod Categories for Data Types
AUTOSAR software components use computation methods (CompuMethods) to convert between the
internal values and physical representation of AUTOSAR data. Common uses for CompuMethods are
linear data scaling and calibration and measurement.

The category attribute of a CompuMethod represents a specialization of the CompuMethod, which
can impose semantic constraints. The CompuMethod categories produced by the code generator
include:

• BITFIELD_TEXTTABLE — Transform internal value into bitfield textual elements.
• IDENTICAL — Floating-point or integer function for which internal and physical values are

identical and do not require conversion.
• LINEAR — Linear conversion of an internal value; for example, multiply the internal value with a

factor, then add an offset.
• RAT_FUNC — Rational function; similar to linear conversion, but with conversion restrictions
specific to rational functions.

• SCALE_LINEAR_AND_TEXTTABLE — Combination of LINEAR and TEXTTABLE scaling
specifications.

• TEXTTABLE — Transform internal value into textual elements.

The ARXML exporter generates CompuMethods for every primitive application type, allowing
calibration and measurement tools to monitor and interact with the application data. The following

 Model AUTOSAR Data Types

2-49

table shows the CompuMethod categories that the code generator produces for data types in a model
that is configured for AUTOSAR.

Data Type CompuMethod Category CompuMethod on
Application Type

CompuMethod on
Implementation Type

Bitfield BITFIELD_TEXTTABLE Yes Yes
Boolean TEXTTABLE Yes Yes
Enumerated without
storage type

TEXTTABLE Yes Yes

Enumerated with
storage type

TEXTTABLE Yes No

Fixed-point LINEAR
RAT_FUNC (limited to reciprocal
scaling)
SCALE_LINEAR_AND_TEXTABLE

Yes No

Floating-point IDENTICAL
SCALE_LINEAR_AND_TEXTABLE

Yes No

Integer IDENTICAL
SCALE_LINEAR_AND_TEXTABLE

Yes No

For enumerated data types, the ARXML importer tool adheres to the AUTOSAR standard and sets the
CompuMethod category TEXTTABLE to the following:

1 The value of the symbol attribute if it exists.
2 The value VT if it is a valid C identifier.
3 The value of the shortLabel.

For floating-point and integer data types that do not require conversion between internal and physical
values, the exporter generates a generic CompuMethod with category IDENTICAL and short-name
Identcl.

For information about configuring CompuMethods for code generation, see “Configure AUTOSAR
CompuMethods” on page 4-236.

See Also

Related Examples
• “Organize Data into Structures in Generated Code” (Embedded Coder)
• “Configure AUTOSAR Data Types Export” on page 4-244
• “Automatic AUTOSAR Data Type Generation” on page 4-249
• “Configure AUTOSAR CompuMethods” on page 4-236

More About
• “AUTOSAR Data Types”

2 Modeling Patterns for AUTOSAR Components

2-50

Model AUTOSAR Calibration Parameters and Lookup Tables
In Simulink, you can model AUTOSAR calibration parameters and lookup tables, which support run-
time tuning of the AUTOSAR application with calibration and measurement tools.

In this section...
“AUTOSAR Calibration Parameters” on page 2-51
“Calibration Parameters for STD_AXIS, FIX_AXIS, and COM_AXIS Lookup Tables” on page 2-51

AUTOSAR Calibration Parameters
A calibration parameter is a value in an Electronic Control Unit (ECU). You tune or modify these
parameters using a calibration data management tool or an offline calibration tool.

The AUTOSAR standard specifies the following types of calibration parameters:

• Calibration parameters that belong to a calibration component (ParameterSwComponent), which
AUTOSAR software components can access.

• Internal calibration parameters, which only one AUTOSAR software component defines and
accesses.

To provide your Simulink model with access to calibration parameters, reference the calibration
parameters in block parameters.

To map Simulink parameter objects in the model workspace to AUTOSAR calibration parameters,
open the AUTOSAR code perspective and use the Code Mappings editor, Parameters tab. To view

and modify AUTOSAR code and calibration attributes for a selected parameter, click the icon. For
more information, see “Map Model Workspace Parameters to AUTOSAR Component Parameters” on
page 4-54.

Calibration Parameters for STD_AXIS, FIX_AXIS, and COM_AXIS Lookup
Tables
You can model standard axis (STD_AXIS), fix axis (FIX_AXIS), and common axis (COM_AXIS) lookup
tables for AUTOSAR applications. AUTOSAR applications can use lookup tables in either or both of
two ways:

• Implement fast search operations.
• Support tuning of the application with calibration and measurement tools.

A lookup table uses an array of data to map input values to output values, approximating a
mathematical function. An n-dimensional lookup table can approximate an n-dimensional function. A
COM_AXIS lookup table is one in which tunable breakpoints (axis points) are shared among multiple
table axes.

The AUTOSAR standard defines calibration parameter categories for STD_AXIS, FIX_AXIS, and
COM_AXIS lookup table data:

• CURVE, MAP, and CUBOID parameters represent 1-D, 2-D, and 3-D table data, respectively.

 Model AUTOSAR Calibration Parameters and Lookup Tables

2-51

• COM_AXIS parameters represent axis data.

In Simulink, you can:

• Import ARXML files that contain AUTOSAR lookup tables in STD_AXIS, FIX_AXIS, and COM_AXIS
configurations:

• For a lookup table in a STD_AXIS configuration, the importer creates a lookup table block and
initializes it with a Simulink.LookupTable object.

• For a lookup table in a FIX_AXIS configuration, the importer creates a lookup table block and
initializes the table values with a Simulink.Parameter object and the breakpoint values are
initialized with values from fix axes parameters.

• For a lookup table in a COM_AXIS configuration, the importer creates a prelookup block
initialized with a Simulink.Breakpoint object and an interpolation-using-prelookup block
initialized with a Simulink.LookupTable object.

• The importer maps each created Simulink lookup table to AUTOSAR parameters with code and
calibration attributes.

• If the ARXML files define input variables that measure lookup table inputs, the importer
creates corresponding model content. If the input variables are global variables, the importer
connects static global signals to lookup table block inputs. If the input variables are root-level
inputs, the importer connects root-level inports to lookup table block inputs.

• Create STD_AXIS, FIX_AXIS, and COM_AXIS lookup tables and map them to AUTOSAR
parameters. You map lookup table objects to AUTOSAR parameters by using the Code Mappings
editor, Parameters tab.

• To model an AUTOSAR lookup table in a STD_AXIS configuration, create an AUTOSAR Blockset
Curve or Map block.

Open each lookup table block and configure it to generate a routine from the AUTOSAR 4.0
code replacement library (CRL). As you modify block settings, the block dialog box updates the
name of the targeted AUTOSAR routine.

To store the data, create a single Simulink.LookupTable object in the model workspace.
Use the object in the Curve or Map block.

Data appears in the generated C code as fields of a single structure. To control the
characteristics of the structure type, such as its name, use the properties of the object.

• To model an AUTOSAR lookup table in a FIX_AXIS configuration, create an AUTOSAR Blockset
Curve or Map block with Breakpoints specification: Even spacing.

Open each lookup table block and configure it to generate a routine from the AUTOSAR 4.0
code replacement library (CRL). As you modify block settings, the block dialog box updates the
name of the targeted AUTOSAR routine.

To store the data, create a single Simulink.Parameter object in the model workspace. Use
the object in the 1-D Lookup Table block.

Table data appears in the generated C code as a separate variable. The breakpoint values
appear as constants.

• To model an AUTOSAR lookup table in a COM_AXIS configuration, create one or more
AUTOSAR Blockset Prelookup blocks. Pair each Prelookup with an AUTOSAR Blockset Curve
Using Prelookup or Map Using Prelookup block.

2 Modeling Patterns for AUTOSAR Components

2-52

Open each lookup table block and configure it to generate a routine from the AUTOSAR 4.0
code replacement library (CRL). As you modify block settings, the block dialog box updates the
name of the targeted AUTOSAR routine.

To store each set of table data, create a Simulink.LookupTable object in the model
workspace. To store each breakpoint vector, create a Simulink.Breakpoint object in the
model workspace. Use each Simulink.LookupTable object in a Curve Using Prelookup or
Map Using Prelookup block and each Simulink.Breakpoint object in a Prelookup block.
You can reduce memory consumption by sharing breakpoint data between lookup tables.

Each set of table data appears in the generated C code as a separate variable. If the table size
is tunable, each breakpoint vector appears as a structure with one field to store the breakpoint
data and, optionally, one field to store the length of the vector. The second field enables you to
tune the effective size of the table. If the table size is not tunable, each breakpoint vector
appears as an array.

• Add AUTOSAR operating points to the lookup tables. Connect root level inports to Curve, Map,
or Prelookup blocks. Alternatively, configure input signals to Curve, Map, or Prelookup blocks
with static global memory.

• To map Simulink lookup table objects in the model workspace to AUTOSAR calibration
parameters, open the AUTOSAR code perspective and use the Code Mappings editor,
Parameters tab. To view and modify AUTOSAR code and calibration attributes for a selected

parameter, click the icon. For more information, see “Map Model Workspace Parameters to
AUTOSAR Component Parameters” on page 4-54

• Configure the array layout for multidimensional lookup tables. In the Simulink Configuration
Parameters dialog box, Interface pane, set Array layout to Column-major (the default) or Row-
major. The array layout selection affects code generation, including C code and exported ARXML
SwRecordLayout descriptions.

If you select row-major layout, go to the Math and Data Types pane and select the configuration
option Use algorithms optimized for row-major array layout. The algorithm selection affects
simulation and code generation.

• In the Configuration Parameters dialog box, Interface pane, select the AUTOSAR 4.0 code
replacement library for C code generation.

• Generate ARXML and C code with STD_AXIS, FIX_AXIS, and COM_AXIS lookup table content.

The generated C code contains required Ifl and Ifx lookup function calls and Rte data access
function calls.

The generated ARXML files contain information to support run-time calibration of the tunable
lookup table parameters, including:

• Lookup table calibration parameters that reference the application data types — category
CURVE, MAP, or CUBOID for table data, or category COM_AXIS for axis data.

• Application data types of category CURVE, MAP, CUBOID, and COM_AXIS, with the data
calibration properties that you configured. The properties include SwCalibrationAccess,
DisplayFormat, and SwAddrMethod.

• Software record layouts (SwRecordLayouts) referenced by the application data types of
category CURVE, MAP, CUBOID, and COM_AXIS.

For more information, see “Configure Lookup Tables for AUTOSAR Calibration and Measurement” on
page 4-274.

 Model AUTOSAR Calibration Parameters and Lookup Tables

2-53

See Also
Simulink.LookupTable | Simulink.Breakpoint | 1-D Lookup Table | Curve | Curve Using
Prelookup | Map | Map Using Prelookup | Prelookup | getParameter | mapParameter

Related Examples
• “Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54
• “Configure Lookup Tables for AUTOSAR Calibration and Measurement” on page 4-274

More About
• “Code Generation with AUTOSAR Code Replacement Library” on page 5-13

2 Modeling Patterns for AUTOSAR Components

2-54

AUTOSAR Component Creation

• “Create AUTOSAR Software Component in Simulink” on page 3-2
• “Create and Configure AUTOSAR Software Component” on page 3-8
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Import AUTOSAR Software Component with Multiple Runnables” on page 3-18
• “Import AUTOSAR Component to Simulink” on page 3-19
• “Import AUTOSAR Software Composition with Atomic Software Components (Classic Platform)”

on page 3-24
• “Import AUTOSAR Software Component Updates” on page 3-25
• “Import and Reference Shared AUTOSAR Element Definitions” on page 3-29
• “Import AUTOSAR Package into Component Model” on page 3-31
• “AUTOSAR ARXML Importer” on page 3-35
• “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information”

on page 3-37
• “Limitations and Tips” on page 3-39

3

Create AUTOSAR Software Component in Simulink
To create a Simulink representation of an AUTOSAR software component, import an AUTOSAR XML
component description into a new model or create a component in an existing model.

To create an AUTOSAR software component in an existing model, use one of these resources:

• AUTOSAR Component Quick Start — Creates a mapped AUTOSAR software component for your
model and opens the model in the AUTOSAR code perspective.

• Simulink Start Page — Provides AUTOSAR Blockset model templates as a starting point for
AUTOSAR software development.

Alternatively, if you have Simulink Coder and Embedded Coder software, you can use the Embedded
Coder Quick Start. To create an AUTOSAR software component for your model, open Embedded
Coder Quick Start from the Embedded Coder C Code tab or the AUTOSAR Blockset AUTOSAR tab.
As you work through the quick-start procedure, in the Output window, select output option C code
compliant with AUTOSAR or C++ code compliant with AUTOSAR Adaptive Platform.

In this section...
“Create Mapped AUTOSAR Component with Quick Start” on page 3-2
“Create Mapped AUTOSAR Component with Simulink Start Page” on page 3-5

Create Mapped AUTOSAR Component with Quick Start

To create a mapped AUTOSAR software component using the AUTOSAR Component Quick Start:

1 Open a Simulink component model for which an AUTOSAR software component is not mapped.
This example uses AUTOSAR example model swc. For adaptive component creation, you can use
AUTOSAR example model LaneGuidance.

2 In the model window:

a Open the Configuration Parameters dialog box, Code Generation pane, and set the system
target file to either autosar.tlc or autosar_adaptive.tlc. Click OK.

b On the Apps tab, click AUTOSAR Component Designer. Because the model is unmapped,
the AUTOSAR Component Quick Start opens.

3 To configure the model for AUTOSAR software component development, work through the quick-
start procedure.

3 AUTOSAR Component Creation

3-2

In the Set Component pane:

• For a Classic Platform software component, specify an AUTOSAR short name, package path,
and component type, or accept default values.

Component types include Application, ComplexDeviceDriver, EcuAbstraction,
SensorActuator, and ServiceProxy. The most common types are Application and
SensorActuator. For more information, see “Import AUTOSAR Software Composition with
Atomic Software Components (Classic Platform)” on page 3-24.

• For an Adaptive Platform software component, specify an AUTOSAR short name and package
path.

For the Classic Platform, you can also map a submodel referenced from an AUTOSAR software
component model. For more information, see “Map Calibration Data for Submodels Referenced
from AUTOSAR Component Models” on page 4-65.

Click Next.
4 If you are creating a Classic Platform software component, a Set Interfaces pane opens.

 Create AUTOSAR Software Component in Simulink

3-3

In the Set Interfaces pane, select an option for creating component interface properties.

• If you select Create defaults based on the Simulink model, at the conclusion of the quick-
start procedure, the software creates component interface properties by applying AUTOSAR
defaults to the model.

• If you select Import from ARXML, an ARXML Files field opens. Specify one or more
AUTOSAR XML files containing packages of shared AUTOSAR element definitions. For
example, you can specify data type related definitions that are common to many components.
For more information, see “Import and Reference Shared AUTOSAR Element Definitions” on
page 3-29 and the examples “Import AUTOSAR Package into Component Model” on page 3-
31 and “Import AUTOSAR Package into Adaptive Component Model” on page 6-17.

Click Next.
5 The Finish pane opens.

3 AUTOSAR Component Creation

3-4

When you click Finish, your model opens in the AUTOSAR code perspective. To continue
configuring the component model, see “AUTOSAR Component Configuration” on page 4-3.

Create Mapped AUTOSAR Component with Simulink Start Page
The Simulink Start Page provides AUTOSAR Blockset model templates as a starting point for
AUTOSAR software component development. You can select either a Classic Platform or Adaptive
Platform component template and click Create Model. (If you have System Composer software, you
can also select an architecture model template. For more information, see “Create AUTOSAR
Architecture Models” on page 8-2.)

The created model is preconfigured with AUTOSAR system target file and other code generation
settings, but is not yet mapped to an AUTOSAR software component. After you examine and refine
the template model, use the AUTOSAR Component Quick Start (or potentially the Embedded Coder
Quick Start) to map the model to an AUTOSAR software component. For example:

1 Open the Simulink Start Page. For example, enter the MATLAB command simulink or open a
new model from the MATLAB or Simulink toolstrip.

The Start Page opens. On the New tab, scroll down to AUTOSAR Blockset and expand the
product row.

 Create AUTOSAR Software Component in Simulink

3-5

2 Place your cursor over the template you want to use and click Create Model. A model based on
the template opens. (The Simulink Start Page closes.)

In this example, the created model is a starting point for developing a software component for
the AUTOSAR Classic Platform.

3 Explore the model and refine the configuration according to your requirements. Optionally, you
can develop the component behavior. To map the model to an AUTOSAR software component, use
the AUTOSAR Component Quick Start. On the Apps tab, click AUTOSAR Component
Designer. Because the model is unmapped, the AUTOSAR Component Quick Start opens.

3 AUTOSAR Component Creation

3-6

4 Work through the quick-start procedure. If necessary, refer to “Create Mapped AUTOSAR
Component with Quick Start” on page 3-2. When you click Finish, your model opens in the
AUTOSAR code perspective. To continue configuring the component model, see “AUTOSAR
Component Configuration” on page 4-3

See Also

Related Examples
• “AUTOSAR Component Configuration” on page 4-3
• “Create and Configure AUTOSAR Software Component” on page 3-8
• “Create and Configure AUTOSAR Adaptive Software Component” on page 6-6

 Create AUTOSAR Software Component in Simulink

3-7

Create and Configure AUTOSAR Software Component

Create an AUTOSAR software component model from an algorithm model.

AUTOSAR Blockset software supports AUTomotive Open System ARchitecture (AUTOSAR), an open
and standardized automotive software architecture. Automobile manufacturers, suppliers, and tool
developers jointly develop AUTOSAR components. To develop AUTOSAR components in Simulink,
follow this general workflow:

1 Create a Simulink representation of an AUTOSAR component.
2 Develop the component by refining the AUTOSAR configuration and creating algorithmic model

content.
3 Generate ARXML descriptions and algorithmic C code for testing in Simulink or integration into

an AUTOSAR run-time environment. (AUTOSAR code generation requires Simulink Coder and
Embedded Coder.)

Create AUTOSAR Software Component in Simulink

To create an initial Simulink representation of an AUTOSAR software component, you take one of
these actions:

• Create an AUTOSAR software component using an existing Simulink model.
• Import an AUTOSAR software component description from ARXML files into a new Simulink

model. (See example “Import AUTOSAR Component to Simulink” on page 3-19.)

To create an AUTOSAR software component using an existing model, first open a Simulink component
model for which an AUTOSAR software component is not mapped. This example uses AUTOSAR
example model swc.

open_system('swc');

3 AUTOSAR Component Creation

3-8

In the model window, on the Modeling tab, select Model Settings. In the Configuration Parameters
dialog box, Code Generation pane, set the system target file to autosar.tlc. Click OK.

To configure the model as a mapped AUTOSAR software component, open the AUTOSAR Component
Quick Start. On the Apps tab, click AUTOSAR Component Designer. The AUTOSAR Component
Quick Start opens.

To configure the model for AUTOSAR software component development, work through the quick-start
procedure. This example accepts default settings for the options in the Quick Start Set Component
and Set Interfaces panes.

In the Finish pane, when you click Finish, your model opens in the AUTOSAR code perspective.

Configure AUTOSAR Software Component in Simulink

The AUTOSAR code perspective displays your model, and directly below the model, the Code
Mappings editor.

 Create and Configure AUTOSAR Software Component

3-9

Next you use the Code Mappings editor and the AUTOSAR Dictionary to further develop the
AUTOSAR component.

The Code Mappings editor displays entry-point functions, model inports, outports, parameters, and
other Simulink elements relevant to your AUTOSAR platform. Use the editor to map Simulink model
elements to AUTOSAR component elements from a Simulink model perspective. AUTOSAR
component elements are defined in the AUTOSAR standard, and include runnable entities, ports, and
inter-runnable variables (IRVs).

Open each Code Mapping tab and examine the mapped model elements. To modify the AUTOSAR
mapping for an element, select an element and modify its associated properties. When you select an
element, it is highlighted in the model. To view additional code and communication attributes for the
element, click the edit icon.

To configure the AUTOSAR properties of the mapped AUTOSAR software component, open the
AUTOSAR Dictionary. In the Code Mappings editor, click the AUTOSAR Dictionary button, which is
the leftmost icon. The AUTOSAR Dictionary opens in the AUTOSAR view that corresponds to the
Simulink element that you last selected and mapped in the Code Mappings editor. If you selected and
mapped a Simulink inport, the dictionary opens in ReceiverPorts view and displays the AUTOSAR
port to which you mapped the inport.

3 AUTOSAR Component Creation

3-10

The AUTOSAR Dictionary displays the mapped AUTOSAR component and its elements,
communication interfaces, computation methods, software address methods, and XML options. Use
the dictionary to configure AUTOSAR elements and properties from an AUTOSAR component
perspective.

Open each node and examine its AUTOSAR elements. To modify an AUTOSAR element, select an
element and modify its associated properties. AUTOSAR XML and AUTOSAR-compliant C code
generated from the model reflect your modifications.

Generate C Code and ARXML Descriptions (Embedded Coder)

If you have Simulink Coder and Embedded Coder software, you can build the AUTOSAR model.
Building the AUTOSAR model generates AUTOSAR-compliant C code and exports AUTOSAR XML
(ARXML) descriptions. In the model window, press Ctrl+B or, on the AUTOSAR tab, click Generate
Code.

When the build completes, a code generation report opens. Examine the report. Verify that your Code
Mappings editor and AUTOSAR Dictionary changes are reflected in the C code and ARXML
descriptions. For example, use the Find field to search for the names of the Simulink model elements
and AUTOSAR component elements that you modified.

 Create and Configure AUTOSAR Software Component

3-11

Related Links

• “AUTOSAR Component Configuration” on page 4-3
• “Code Generation” (Classic Platform)
• “AUTOSAR Blockset”

3 AUTOSAR Component Creation

3-12

Import AUTOSAR XML Descriptions Into Simulink
In Simulink, you can import AUTOSAR software components, compositions, or packages of shared
elements from AUTOSAR XML (ARXML) files. You use the ARXML importer, which is implemented as
an arxml.importer object. For more information, see “AUTOSAR ARXML Importer” on page 3-35.

To import ARXML software description files into Simulink, first call the arxml.importer function. In
the function argument, specify one or more ARXML files that describe software components,
compositions, or packages of shared elements. For example:
ar = arxml.importer('ThrottlePositionControlComposition.arxml')

The function:

• Parses the ARXML files to identify AUTOSAR software descriptions.
• If you entered the function call without a terminating semicolon (;), lists the AUTOSAR content of

the specified ARXML file or files.
• Returns a handle to an ARXML importer object. In subsequent function calls, the object

represents the parsed AUTOSAR software descriptions in the ARXML files.

For more information, see “Create ARXML Importer Object” on page 3-14.

Next, based on what you want to import, call an arxml.importer create or update function. For
example:

• To import an ARXML software component and create an AUTOSAR model, call
createComponentAsModel. For more information, see “Import Software Component and Create
Model” on page 3-14.

• To import an ARXML software composition and create AUTOSAR models, call
createCompositionAsModel. For more information, see “Import Software Composition and
Create Models” on page 3-15.

• To update an existing AUTOSAR model with external ARXML file changes, call updateModel. For
more information, see “Import Component or Composition External Updates Into Model” on page
3-16.

• To update an existing AUTOSAR component model with packages of shared element definitions,
call updateAUTOSARProperties. For more information, see “Import Shared Element Packages
into Component Model” on page 3-16.

To help support the round trip of AUTOSAR elements between an AUTOSAR authoring tool (AAT) and
the Simulink model-based design environment, ARXML import preserves imported AUTOSAR XML
file structure, elements, and element universal unique identifiers (UUIDs) for ARXML export. For
more information, see “Round-Trip Preservation of AUTOSAR XML File Structure and Element
Information” on page 3-37.

After you import an AUTOSAR software component or composition into Simulink, you can develop the
behavior and configuration of the component or composition model. To refine the component
configuration, see “AUTOSAR Component Configuration” on page 4-3.

To configure ARXML export options, see “Configure AUTOSAR XML Options” on page 4-43.

In this section...
“Create ARXML Importer Object” on page 3-14

 Import AUTOSAR XML Descriptions Into Simulink

3-13

In this section...
“Import Software Component and Create Model” on page 3-14
“Import Software Composition and Create Models” on page 3-15
“Import Component or Composition External Updates Into Model” on page 3-16
“Import Shared Element Packages into Component Model” on page 3-16

Create ARXML Importer Object
Before you import ARXML descriptions into Simulink, call the arxml.importer function. Specify the
names of one or more ARXML files that contain descriptions of AUTOSAR software components,
compositions, or shared elements. The function parses the descriptions in the specified ARXML files
and creates an importer object that represents the parsed information. Subsequent calls to
createComponentAsModel or other ARXML importer functions must specify the importer object.

For example, enter into the folder matlabroot/examples/autosarblockset/main. Open the
autosar_swc model and build it.

The below call specifies a main AUTOSAR software component file,
autosar_swc_component.arxml, and related dependent files containing data type,
implementation, and interface information that completes the software component description.
ar = arxml.importer({'autosar_swc_component.arxml','autosar_swc_datatype.arxml',...
 'autosar_swc_implementation.arxml','autosar_swc_interface.arxml'})

This call specifies an ARXML file, ThrottlePositionControlComposition.arxml, which
describes an AUTOSAR software composition and its aggregated AUTOSAR components. The ARXML
file is located at matlabroot/examples/autosarblockset/data, which is on the default
MATLAB search path.
ar = arxml.importer('ThrottlePositionControlComposition.arxml')

If you enter the arxml.importer function call without a terminating semicolon (;), the importer lists
the AUTOSAR content of the specified XML file or files. The information includes paths to software
components in the AUTOSAR package structure, which you use in the next step.

In this example, the path to software composition ThrottlePositionControlComposition is /
Company/Components/ThrottlePositionControlComposition. The path to software
component Controller is /Company/Components/Controller.
ar =
The file "path/ThrottlePositionControlComposition.arxml" contains:
 1 Composition-Software-Component-Type:
 '/Company/Components/ThrottlePositionControlComposition'
 2 Application-Software-Component-Type:
 '/Company/Components/Controller'
 '/Company/Components/ThrottlePositionMonitor'
 3 Sensor-Actuator-Software-Component-Type:
 '/Company/Components/AccelerationPedalPositionSensor'
 '/Company/Components/ThrottlePositionActuator'
 '/Company/Components/ThrottlePositionSensor'

Import Software Component and Create Model
To import a parsed atomic software component into a Simulink model, call the
createComponentAsModel function. Specify the ARXML importer object and the component to
create as a model. The parsed ARXML files must specify all dependencies for the component.

3 AUTOSAR Component Creation

3-14

The following example creates a Simulink representation of an AUTOSAR atomic software
component.
ar = arxml.importer('ThrottlePositionControlComposition.arxml');
names = getComponentNames(ar)

names = 5x1 cell
 {'/Company/Components/Controller' }
 {'/Company/Components/ThrottlePositionMonitor' }
 {'/Company/Components/AccelerationPedalPositionSensor'}
 {'/Company/Components/ThrottlePositionActuator' }
 {'/Company/Components/ThrottlePositionSensor' }

createComponentAsModel(ar,'/Company/Components/Controller',...
 'ModelPeriodicRunnablesAs','AtomicSubsystem');

The 'ModelPeriodicRunnablesAs' argument controls whether the importer models AUTOSAR
periodic runnables as atomic subsystems with periodic rates (the default) or function-call subsystems
with periodic rates. Specify AtomicSubsystem unless your design requires use of function-call
subsystems. For more information, see “Import AUTOSAR Software Component with Multiple
Runnables” on page 3-18.

To import Simulink data objects for AUTOSAR data into a Simulink data dictionary, you can set the
'DataDictionary' argument on the model creation. If the specified dictionary does not already
exist, the importer creates it.

To explicitly designate an AUTOSAR runnable as the initialization runnable in a component, use the
'InitializationRunnable' argument on the model creation.

For more information, see the createComponentAsModel reference page and the example “Import
AUTOSAR Component to Simulink” on page 3-19.

Import Software Composition and Create Models
To import a parsed atomic software composition into a Simulink model, call the
createCompositionAsModel function. Specify the ARXML importer object and the composition to
create as a model. The parsed ARXML files must specify all dependencies for the composition.

The following example creates a Simulink representation of an AUTOSAR software composition.
ar = arxml.importer('ThrottlePositionControlComposition.arxml');
names = getComponentNames(ar,'Composition')

names = 1x1 cell array
 {'/Company/Components/ThrottlePositionControlComposition'}

createCompositionAsModel(ar,'/Company/Components/ThrottlePositionControlComposition');

Creating model 'ThrottlePositionSensor' for component 1 of 5:
 /Company/Components/ThrottlePositionSensor
Creating model 'ThrottlePositionMonitor' for component 2 of 5:
 /Company/Components/ThrottlePositionMonitor
Creating model 'Controller' for component 3 of 5:
 /Company/Components/Controller
Creating model 'AccelerationPedalPositionSensor' for component 4 of 5:
 /Company/Components/AccelerationPedalPositionSensor
Creating model 'ThrottlePositionActuator' for component 5 of 5:
 /Company/Components/ThrottlePositionActuator
Creating model 'ThrottlePositionControlComposition' for composition 1 of 1:
 /Company/Components/ThrottlePositionControlComposition

To include existing Simulink atomic software component models in the composition model, use the
'ComponentModels' argument on the composition model creation.

For more information, see the createCompositionAsModel reference page and the example
“Import AUTOSAR Composition to Simulink” on page 7-2.

 Import AUTOSAR XML Descriptions Into Simulink

3-15

For compositions containing more than 20 software components, sharing AUTOSAR properties
among components can significantly improve performance and reduce duplication for composition
workflows. To configure a composition import to store AUTOSAR properties for component sharing,
use the 'DataDictionary' and 'ShareAUTOSARProperties' arguments. For more information,
see the createCompositionAsModel reference page and the example “Import AUTOSAR
Composition and Share AUTOSAR Dictionary”.

Import Component or Composition External Updates Into Model
After you import a parsed atomic software component or composition into a Simulink model, the
ARXML description of the component or composition might continue to evolve in a different
AUTOSAR authoring environment. To update your AUTOSAR component or composition model with
external changes, call the updateModel function. Specify an ARXML importer object representing
the ARXML changes and the existing AUTOSAR model to update.

The following example updates an existing AUTOSAR component model named Controller with
changes from the file ThrottlePositionControlComposition_updated.arxml.
% Create and open AUTOSAR controller component model
ar = arxml.importer('ThrottlePositionControlComposition.arxml');
createComponentAsModel(ar,'/Company/Components/Controller',...
 'ModelPeriodicRunnablesAs','AtomicSubsystem');

% Update AUTOSAR controller component model (model must be open)
ar2 = arxml.importer('ThrottlePositionControlComposition_updated.arxml');
updateModel(ar2,'Controller');

For more information, see the updateModel reference page, “Import AUTOSAR Software
Component Updates” on page 3-25, and the update section of the example “Import AUTOSAR
Component to Simulink” on page 3-19.

Import Shared Element Packages into Component Model
After you create an AUTOSAR software component model, either by starting in Simulink or importing
ARXML component descriptions, you can update the AUTOSAR properties of the component model
with predefined elements and properties that are shared among components. To update the
component AUTOSAR properties with packages of shared element definitions, call the
updateAUTOSARProperties function. Specify an ARXML importer object representing the ARXML
shared element definitions and the existing AUTOSAR model to update.

The following example updates an AUTOSAR component model with element definitions from the file
SwAddrMethods.arxml.
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
modelName = 'autosar_swc';
open_system(modelName);
ar = arxml.importer('SwAddrMethods.arxml');
updateAUTOSARProperties(ar,modelName);

For more information, see the updateAUTOSARProperties reference page, “Import and Reference
Shared AUTOSAR Element Definitions” on page 3-29, and the example “Import AUTOSAR Package
into Component Model” on page 3-31.

See Also
arxml.importer

3 AUTOSAR Component Creation

3-16

Related Examples
• “Import AUTOSAR Component to Simulink” on page 3-19
• “Import AUTOSAR Composition to Simulink” on page 7-2
• “Import AUTOSAR Software Component Updates” on page 3-25
• “Import and Reference Shared AUTOSAR Element Definitions” on page 3-29
• “Import AUTOSAR Package into Component Model” on page 3-31
• “Configure AUTOSAR XML Options” on page 4-43
• “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-

37

More About
• “AUTOSAR ARXML Importer” on page 3-35
• “Workflows for AUTOSAR” on page 1-13

 Import AUTOSAR XML Descriptions Into Simulink

3-17

Import AUTOSAR Software Component with Multiple Runnables
The AUTOSAR ARXML importer functions createComponentAsModel and
createCompositionAsModel and the AUTOSAR architecture function importFromARXML can
import AUTOSAR software components with multiple runnable entities into a new Simulink model.
Use the 'ModelPeriodicRunnablesAs' argument on the model creation to specify whether the
importer models AUTOSAR periodic runnables as atomic subsystems with periodic rates (the default)
or function-call subsystems with periodic rates.

If you set 'ModelPeriodicRunnablesAs' to the default value, 'AtomicSubsystem', the importer
creates rate-based models. If the ARXML code contains periodic runnables, the importer adds rate-
based model content, including atomic subsystems and data transfer lines with rate transitions, and
maps them to corresponding periodic runnables and IRVs imported from the AUTOSAR software
component.

If you set 'ModelPeriodicRunnablesAs' to 'FunctionCallSubsystem', the importer creates
function-call-based models. The importer adds function-call subsystem or function blocks and signal
lines and maps them to corresponding runnables and IRVs imported from the AUTOSAR software
component.

Set 'ModelPeriodicRunnablesAs' to 'AtomicSubsystem' unless your design requires use of
function-call subsystems. The following call directs the importer to import a multi-runnable AUTOSAR
software component from an ARXML file and map it into a new rate-based model. The ARXML file is
located at matlabroot/examples/autosarblockset/data, which is on the default MATLAB
search path.
ar = arxml.importer('ThrottlePositionControlComposition.arxml')
createComponentAsModel(ar,'/Company/Components/Controller',...
 'ModelPeriodicRunnablesAs','AtomicSubsystem')

For more information, see “Model AUTOSAR Software Components” on page 2-3.

See Also
createComponentAsModel | createCompositionAsModel | importFromARXML

Related Examples
• “Import AUTOSAR Component to Simulink” on page 3-19
• “Import AUTOSAR Composition to Simulink” on page 7-2
• “Import AUTOSAR Composition into Architecture Model” on page 8-55

3 AUTOSAR Component Creation

3-18

Import AUTOSAR Component to Simulink

Create Simulink® model from XML description of AUTOSAR software component.

Import AUTOSAR Component from ARXML File to Simulink

Here is an AUTOSAR application software component that implements a controller in an automotive
throttle position control system. The controller component takes input values from an accelerator
pedal position (APP) sensor and a throttle position sensor (TPS). The controller translates the values
into input values for a throttle actuator.

The component was created in an AUTOSAR authoring tool and exported to the file
ThrottlePositionControlComposition.arxml.

Use the MATLAB function createComponentAsModel to import the AUTOSAR XML (ARXML)
description and create an initial Simulink representation of the AUTOSAR component. First, parse
the ARXML description file and list the components it contains.

ar = arxml.importer('ThrottlePositionControlComposition.arxml');
names = getComponentNames(ar)

names = 5x1 cell
 {'/Company/Components/Controller' }
 {'/Company/Components/ThrottlePositionMonitor' }
 {'/Company/Components/AccelerationPedalPositionSensor'}
 {'/Company/Components/ThrottlePositionActuator' }
 {'/Company/Components/ThrottlePositionSensor' }

For the Controller software component, use createComponentAsModel to create a Simulink
representation.

createComponentAsModel(ar,'/Company/Components/Controller',...
 'ModelPeriodicRunnablesAs','AtomicSubsystem');

The function call creates a component model that represents an AUTOSAR application software
component. An atomic subsystem represents an AUTOSAR periodic runnable, and an Initialize
Function block represents an AUTOSAR initialize runnable. Simulink inports and outports represent
AUTOSAR ports.

 Import AUTOSAR Component to Simulink

3-19

Develop AUTOSAR Component Algorithm, Simulate, and Generate Code

After creating an initial Simulink representation of the AUTOSAR component, you develop the
component. You refine the AUTOSAR configuration and create algorithmic model content.

For example, the Runnable_Step_sys subsystem in the Controller component model contains an
initial stub implementation of the controller behavior.

Here is a possible implementation of the throttle position controller behavior. (To explore this
implementation, see the model autosar_swc_controller, which is provided with the example
“Design and Simulate AUTOSAR Components and Generate Code” on page 4-77.) The component
takes as inputs an APP sensor percent value from a pedal position sensor and a TPS percent value
from a throttle position sensor. Based on these values, the controller calculates the error. The error is
the difference between where the operator wants the throttle, based on the pedal sensor, and the
current throttle position. In this implementation, a Discrete PID Controller block uses the error value
to calculate a throttle command percent value to provide to a throttle actuator. A scope displays the
error value and the Discrete PID Controller block output value over time.

3 AUTOSAR Component Creation

3-20

As you develop AUTOSAR components, you can:

• Simulate the component model individually or in a containing composition or test harness.
• Generate ARXML component description files and algorithmic C code for testing in Simulink or

integration into an AUTOSAR run-time environment. (AUTOSAR code generation requires
Simulink Coder and Embedded Coder.)

For more information on developing, simulating, and building AUTOSAR components, see example
“Design and Simulate AUTOSAR Components and Generate Code” on page 4-77.

Update AUTOSAR Component Model with Architectural Changes from Authoring Tool

Suppose that, after you imported the AUTOSAR software component into Simulink and began
developing algorithms, architectural changes were made to the component in the AUTOSAR
authoring tool.

Here is the revised component. The changes add a control override receive port and a throttle
command override provide port. In the AUTOSAR authoring tool, the revised component is exported
to the file ThrottlePositionControlComposition_updated.arxml.

Use the MATLAB function updateModel to import the architectural revisions from the ARXML file.
The function updates the AUTOSAR component model with the changes and reports the results.

ar2 = arxml.importer('ThrottlePositionControlComposition_updated.arxml');
updateModel(ar2,'Controller');

 Import AUTOSAR Component to Simulink

3-21

Updating model Controller
Saving original model as Controller_backup.slx
Creating HTML report Controller_update_report.html

After the update, in the component model, highlighting indicates where changes occurred.

The function also generates and displays an HTML AUTOSAR update report. The report lists changes
that the update made to Simulink and AUTOSAR elements in the component model. In the report, you
can click hyperlinks to navigate from change descriptions to model changes.

Connect the added blocks, update the inports and outports inside the subsystem, and update the
model diagram. For example:

3 AUTOSAR Component Creation

3-22

Related Links

• createComponentAsModel
• updateModel
• “Component Creation”
• “Import AUTOSAR Software Component Updates” on page 3-25
• “Design and Simulate AUTOSAR Components and Generate Code” on page 4-77

 Import AUTOSAR Component to Simulink

3-23

Import AUTOSAR Software Composition with Atomic Software
Components (Classic Platform)

You can import an AUTOSAR software composition from ARXML files into a new Simulink model.
AUTOSAR compositions aggregate AUTOSAR software components and potentially other
compositions. Use the arxml.importer function createCompositionAsModel to import a
composition.

The following types of AUTOSAR atomic software components, if found in the ARXML description of a
composition, are imported and represented as component models.

• Application component
• Sensor-actuator component
• Complex device driver component
• ECU abstraction component
• Service proxy component

Application and sensor-actuator components are frequently imported, created, and modeled in
Simulink. For complex device driver, ECU abstraction, or service proxy components that you import
from compositions, you can model only the application side of their behavior in Simulink. For
example, a complex device driver component can access Runtime Environment (RTE) device driver
interfaces as an application-level component. But you cannot model the corresponding Basic Software
(BSW) device drivers in Simulink.

See Also
createCompositionAsModel

Related Examples
• “Import AUTOSAR Composition to Simulink” on page 7-2

3 AUTOSAR Component Creation

3-24

Import AUTOSAR Software Component Updates
After you create a Simulink model that represents an AUTOSAR software component or composition,
the ARXML description of the component or composition can change independently. Using
arxml.importer function updateModel, you can import the modified ARXML description and
update the model to reflect the changes. The update generates an HTML report that details
automatic updates applied to the model, and additional manual changes that you must perform.

In this section...
“Update Model with AUTOSAR Software Component Changes” on page 3-25
“AUTOSAR Update Report Section Examples” on page 3-26

Update Model with AUTOSAR Software Component Changes
To update a model with AUTOSAR software component changes described in ARXML files:

1 Open a model for which you previously imported or exported ARXML files. This example uses the
example ARXML file ThrottlePositionControlComposition.arxml to create a
Controller model. The ARXML file is located at matlabroot/examples/autosarblockset/
data, which is on the default MATLAB search path.
% Create and open AUTOSAR controller component model
ar = arxml.importer('ThrottlePositionControlComposition.arxml');
createComponentAsModel(ar,'/Company/Components/Controller',...
 'ModelPeriodicRunnablesAs','AtomicSubsystem');

2 Issue MATLAB commands to import ARXML descriptions into the model and update the model
with changes.

Note The imported ARXML descriptions must contain the AUTOSAR software component
mapped by the model.

For example, the following commands update the Controller model with changes from ARXML
file ThrottlePositionControlComposition_updated.arxml. The ARXML file is located at
matlabroot/examples/autosarblockset/data, which is on the default MATLAB search
path.
% Update AUTOSAR controller component model
ar2 = arxml.importer('ThrottlePositionControlComposition_updated.arxml');
updateModel(ar2,'Controller');

Updating model Controller
Saving original model as Controller_backup.slx
Creating HTML report Controller_update_report.html

The AUTOSAR Update Report opens.

 Import AUTOSAR Software Component Updates

3-25

3 Examine the report.

a Verify that the ARXML importer has updated the model content and configuration based on
the ARXML changes.

b Optionally, click compare models to compare the original model with the updated model.
Tabular and graphical views of the differences open. You can click a changed element in the
tabular view to navigate to a graphical view of the change.

c Optionally, use the Find field to search for a term. You can quickly navigate to specific
elements or other strings of interest.

4 If the report lists required manual model changes, such as deleting a Simulink block, perform the
required changes.

If you make a required change to the model, further configuration could be required to pass
validation. To see if more manual model changes are required, repeat the update procedure,
rerunning the updateModel function with the same ARXML files.

For live-script update examples, see “Import AUTOSAR Component to Simulink” on page 3-19 and
“Import AUTOSAR Composition to Simulink” on page 7-2.

AUTOSAR Update Report Section Examples
An ARXML update operation generates an AUTOSAR Update Report in HTML format. The report
displays change information in sections:

• “Automatic Model Changes” on page 3-27

3 AUTOSAR Component Creation

3-26

• “Automatic Workspace Changes” on page 3-27
• “Required Manual Model Changes” on page 3-27
• “Automatic AUTOSAR Element Changes” on page 3-28

Automatic Model Changes

The AUTOSAR Update Report section Automatic Model Changes lists Simulink block additions,
block property updates, and model parameter updates made by the importer. For example:

In the updated model, green highlighting identifies added blocks.

Automatic Workspace Changes

The AUTOSAR Update Report section Automatic Workspace Changes lists Simulink data object
additions and property updates made by the importer. For example:

Required Manual Model Changes

The AUTOSAR Update Report section Required Manual Model Changes lists model changes, such
as block deletions, that are required. For example:

 Import AUTOSAR Software Component Updates

3-27

In the updated model, red highlighting identifies the block to delete.

Automatic AUTOSAR Element Changes

The AUTOSAR Update Report section Automatic AUTOSAR Element Changes lists AUTOSAR
element additions and property updates made by the importer. For example:

See Also
updateModel

Related Examples
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Import AUTOSAR Component to Simulink” on page 3-19
• “Import AUTOSAR Composition to Simulink” on page 7-2
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “Workflows for AUTOSAR” on page 1-13

3 AUTOSAR Component Creation

3-28

Import and Reference Shared AUTOSAR Element Definitions
When developing an AUTOSAR software component in Simulink, you can import AUTOSAR element
definitions that are common to many components. For example, multiple product lines and teams
might share elements such as interfaces, data types, and software address methods
(SwAddrMethods). Benefits of sharing AUTOSAR element definitions include lower risk of definition
conflicts and easier code integration.

After you create an AUTOSAR component model, you import the definitions from AUTOSAR XML
(ARXML) files that contain packages of shared AUTOSAR elements. By default, the imported
definitions are read-only, which prevents changes, but you can also import them as read/write. You
can then reference the imported elements in your component model.

When you import an element definition, its dependencies are also imported. For example, importing a
CompuMethod definition also imports Unit and PhysicalDimension definitions. Importing an
ImplementationDataType also imports a SwBaseType definition.

If you import AUTOSAR numeric or enumeration data types, you can use the createNumericType
and createEnumeration functions to create corresponding Simulink data type objects.

When you build the model, exported ARXML code contains references to the shared elements. Their
definitions remain in the element description ARXML files from which you imported them. The
element description files are exported with their names, file structure, and content preserved.

To set up and reuse AUTOSAR element definitions:

1 Create one or more ARXML files containing definitions of AUTOSAR elements for components to
share. Elements that are supported for reference use in Simulink include:

• CompuMethod, Unit, and Dimension
• ImplementationDataType and SwBaseType
• ApplicationDataType
• SwSystemConst, SwSystemConstValueSet, and PredefinedVariant
• SwRecordLayout
• SwAddrMethod
• ClientServerInterface, SenderReceiverInterface, ModeSwitchInterface,

NvDataInterface, ParameterInterface, and TriggerInterface.
2 For each component model that shares a set of definitions, use the arxml.importer function

updateAUTOSARProperties to add the element definitions to the model. This example shows
how to import definitions from the example shared descriptions file SwAddrMethods.arxml into
the example model autosar_swc.

The ARXML file is located at matlabroot/examples/autosarblockset/data, which is on
the default MATLAB search path.
addpath(fullfile(matlabroot,'/examples/autosarblockset/main')); % Add path to model
modelName = 'autosar_swc';
open_system(modelName);
ar = arxml.importer('SwAddrMethods.arxml');
updateAUTOSARProperties(ar,modelName);

Optionally, using property-value pairs, you can specify subsets of elements to import. For more
information, see updateAUTOSARProperties.

 Import and Reference Shared AUTOSAR Element Definitions

3-29

The importer generates an HTML report that details the updates applied to the model.

3 Your model can reference the imported elements in various ways. For example, you can select
imported SwAddrMethod values for AUTOSAR data to group the data for calibration and
measurement. See the example “Import AUTOSAR Package into Component Model” on page 3-
31.

4 Generate model code. The exported ARXML code contains references to the imported elements.
The element description files from which you imported definitions are exported with their names,
file structure, and content preserved.

See Also
updateAUTOSARProperties

Related Examples
• “Import AUTOSAR Package into Component Model” on page 3-31
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13

3 AUTOSAR Component Creation

3-30

Import AUTOSAR Package into Component Model

Import and reference shared ARXML element definitions.

Add AUTOSAR Element Definitions to Model

When developing an AUTOSAR software component in Simulink, you can import AUTOSAR element
definitions that are common to many components. After you create an AUTOSAR component model,
you import the definitions from AUTOSAR XML (ARXML) files that contain packages of shared
AUTOSAR elements. To help implement the component behavior, you want to reference predefined
elements such as interfaces, data types, and software address methods (SwAddrMethods).

Suppose that you are developing an AUTOSAR software component model. You want to import
predefined SwAddrMethod elements that are shared by multiple product lines and teams. This
example uses AUTOSAR importer function updateAUTOSARProperties to import definitions from
shared descriptions file SwAddrMethods.arxml into example model autosar_swc.

modelName = 'autosar_swc';
open_system(modelName);
ar = arxml.importer('SwAddrMethods.arxml');
updateAUTOSARProperties(ar,modelName);

Updating model autosar_swc
Saving original model as autosar_swc_backup.slx
Creating HTML report autosar_swc_update_report.html

The function copies the contents of the specified ARXML files to the AUTOSAR Dictionary of the
specified model and generates an HTML report listing the element additions.

You can view the added elements as elements in the AUTOSAR Dictionary. By default, the elements
are imported as read-only.

set_param(modelName,'SimulationCommand','update'); % Update diagram
autosar_ui_launch(modelName); % Open AUTOSAR Dictionary

 Import AUTOSAR Package into Component Model

3-31

Reference and Configure Imported AUTOSAR Elements

After importing the AUTOSAR elements to the software component model, you can reference and
configure them in the same manner as any AUTOSAR Dictionary element. For example, use the
AUTOSAR code perspective to apply imported SwAddrMethod definition CODE to a model entry-point
function.

% Map step runnable function to SwAddrMethod CODE
slMap = autosar.api.getSimulinkMapping(modelName);
mapFunction(slMap,'Periodic:D1','Runnable_1s','SwAddrMethod','CODE');

3 AUTOSAR Component Creation

3-32

Generate AUTOSAR C Code and XML Descriptions (Embedded Coder)

If you have Simulink Coder and Embedded Coder software, you can generate AUTOSAR-compliant C
code and export ARXML descriptions from the model. To build the model, enter the command
slbuild(modelName);.

Building the model generates an HTML code generation report. The C code contains a software
address method CODE section.

 Import AUTOSAR Package into Component Model

3-33

The ARXML descriptions define and reference SwAddrMethod CODE.

Export preserves the file structure and content of the shared descriptions file
SwAddrMethods.arxml from which you added SwAddrMethod definitions.

Related Links

• updateAUTOSARProperties
• “Import and Reference Shared AUTOSAR Element Definitions” on page 3-29
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13

3 AUTOSAR Component Creation

3-34

AUTOSAR ARXML Importer
The AUTOSAR ARXML importer imports AUTOSAR description files produced by an AUTOSAR
authoring tool (AAT) into a Simulink model. The importer first parses ARXML code that describes
AUTOSAR software components, compositions, or packages of predefined elements for component
sharing. Then, based on commands that you issue, the importer imports a subset of the elements and
objects in the ARXML description into Simulink. The subset consists of AUTOSAR elements relevant
for Simulink model-based design of an automotive application. For example, for an imported
component, the subset includes AUTOSAR ports, interfaces, data types, aspects of internal behavior,
and packages.

For imported software components, the importer creates an initial Simulink representation of each
component, with an initial, default mapping of Simulink model elements to AUTOSAR component
elements. The initial representation provides a starting point for further AUTOSAR configuration and
model-based design.

As part of the import operation, the importer validates the XML in the imported ARXML files. If XML
validation fails for a file, the importer displays errors. For example:
Error
The IsService attribute is undefined for interface /mtest_pkg/mtest_if/In1
in file hArxmlFileErrorMissingIsService_SR_3p2.arxml:48.
Specify the IsService attribute to be either true or false

In this example message, the file name is a hyperlink, and you can click the hyperlink to see the
location of the error in the ARXML file.

To help support the round trip of AUTOSAR elements between an AAT and the Simulink model-based
design environment, Embedded Coder:

• Preserves imported AUTOSAR XML file structure, elements, and element universal unique
identifiers (UUIDs) for ARXML export. For more information, see “Round-Trip Preservation of
AUTOSAR XML File Structure and Element Information” on page 3-37.

• Provides the ability to update an AUTOSAR model based on changes found in imported ARXML
files. For more information, see “Import AUTOSAR Software Component Updates” on page 3-25.

The AUTOSAR ARXML importer is implemented as an arxml.importer object. For a complete list of
functions, see the arxml.importer object reference page.

See Also

Related Examples
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Import AUTOSAR Component to Simulink” on page 3-19
• “Import AUTOSAR Composition to Simulink” on page 7-2
• “Import AUTOSAR Software Component Updates” on page 3-25
• “Import and Reference Shared AUTOSAR Element Definitions” on page 3-29
• “Import AUTOSAR Package into Component Model” on page 3-31
• “Configure AUTOSAR XML Options” on page 4-43
• “Import AUTOSAR Adaptive Software Descriptions” on page 6-12

 AUTOSAR ARXML Importer

3-35

• “Import AUTOSAR Adaptive Components to Simulink” on page 6-13
• “Import AUTOSAR Package into Adaptive Component Model” on page 6-17
• “Configure AUTOSAR Adaptive XML Options” on page 6-33

More About
• “Workflows for AUTOSAR” on page 1-13
• “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-

37

3 AUTOSAR Component Creation

3-36

Round-Trip Preservation of AUTOSAR XML File Structure and
Element Information

To support the round trip of AUTOSAR elements between an AUTOSAR authoring tool (AAT) and
Simulink, ARXML import preserves imported AUTOSAR XML file structure and content for ARXML
export. When you import ARXML files for an AUTOSAR component into Simulink, the importer
preserves:

• AUTOSAR XML file structure. You can compare the ARXML files that you import with the
corresponding ARXML files that you export.

• AUTOSAR element information, including properties, references, and packages. The importer
preserves relationships between elements.

After import, you can view and configure AUTOSAR software component elements and properties in
the AUTOSAR Dictionary. Use the AUTOSAR Dictionary to configure AUTOSAR elements. The
properties that you modify are reflected in exported ARXML descriptions and potentially in generated
AUTOSAR-compliant C or C++ code. For more information, see “Configure AUTOSAR Elements and
Properties” on page 4-8 or “Configure AUTOSAR Adaptive Elements and Properties” on page 6-
21.

AUTOSAR elements that you create in Simulink export to one or more modelname*.arxml files,
which are separate from the imported XML files. You control the file packaging of new elements by
configuring XML options in the AUTOSAR Dictionary. For example, you can set XML option Exported
XML file packaging to Single file or Modular. For more information, see “Configure AUTOSAR
XML Options” on page 4-43 or “Configure AUTOSAR Adaptive XML Options” on page 6-33.

When you export ARXML files from a Simulink model, the code generator preserves the imported
XML file structure, element information, and UUIDs, while applying your modifications. The exported
files include:

• Updated versions of the same ARXML files that you imported.
• One or more modelname*.arxml files, based on whether you set Exported XML file packaging

to Single file or Modular. The modelname*.arxml files include:

• Implementation descriptions.
• If you added AUTOSAR interface or data-related elements in Simulink, interface and data

descriptions.
• For the Adaptive Platform, manifests for AUTOSAR executables and service instances.

Suppose that, in a working folder, you create a Simulink model named Controller.slx from
example ARXML file matlabroot/help/toolbox/autosar/examples/
ThrottlePositionController.arxml.
% Create Controller model from AUTOSAR component
addpath(fullfile(matlabroot,'help','toolbox','autosar','examples'));
ar = arxml.importer('ThrottlePositionController.arxml');
createComponentAsModel(ar,'/Company/Components/Controller',...
 'ModelPeriodicRunnablesAs','AtomicSubsystem');

In the created model, add an AUTOSAR software address method (SwAddrMethod) named CODE and
reference it from an AUTOSAR runnable function.
% In AUTOSAR model, add SwAddrMethod CODE to SwAddrMethods package
arProps = autosar.api.getAUTOSARProperties('Controller');
addPackageableElement(arProps,'SwAddrMethod',...

 Round-Trip Preservation of AUTOSAR XML File Structure and Element Information

3-37

 '/AUTOSAR_Platform/SwAddrMethods','CODE','SectionType','Code')
% Map step runnable function to SwAddrMethod CODE
slMap = autosar.api.getSimulinkMapping('Controller');
mapFunction(slMap,'StepFunction','Runnable_Step','SwAddrMethod','CODE')
% Display SwAddrMethod CODE path and step function mapping information
swAddrMethodPath = find(arProps,[],'SwAddrMethod','PathType','FullyQualified',...
 'SectionType','Code')
[arRunnableName,arRunnableSwAddrMethod] = getFunction(slMap,'StepFunction')

swAddrMethodPath =
 {'/AUTOSAR_Platform/SwAddrMethods/CODE'}

arRunnableName =
 'Runnable_Step'

arRunnableSwAddrMethod =
 'CODE'

You can view the modifications in the AUTOSAR Dictionary, SwAddrMethods view, and the Code
Mappings editor, Functions tab.

Build the model, for example, by using the command slbuild('Controller'). If the model has
Exported XML file packaging set to Modular, the build exports these ARXML files:

• ThrottlePositionController.arxml — Updated version of the ARXML file from which the
model was created. To track changes, you can compare earlier versions of an ARXML file with the
most recent exported version.

• Controller_implementation.arxml — Component implementation information (always
generated).

• Controller_datatype.arxml — Data-related information that reflects your SwAddrMethod
changes to the component model. In the file, AUTOSAR package /AUTOSAR_Platform/
SwAddrMethods contains SwAddrMethod CODE.

See Also

Related Examples
• “Configure AUTOSAR XML Options” on page 4-43
• “Configure AUTOSAR Adaptive XML Options” on page 6-33

More About
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Configure AUTOSAR Elements and Properties” on page 4-8
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21

3 AUTOSAR Component Creation

3-38

Limitations and Tips
The following limitations apply to AUTOSAR component creation.

In this section...
“Cannot Save Importer Objects in MAT-Files” on page 3-39
“ApplicationRecordDataType and ImplementationDataType Element Names Must Match” on page 3-
39

Cannot Save Importer Objects in MAT-Files
If you try to save an arxml.importer object in a MAT-file, you lose the AUTOSAR information. If you
reload the MAT-file, then the object is null (handle = –1), because of the Java® objects that compose
the arxml.importer object.

ApplicationRecordDataType and ImplementationDataType Element
Names Must Match
The element name of an imported ApplicationRecordDataType must match the element name of
the corresponding ImplementationDataType. For example, if an imported
ApplicationRecordDataType has element PVAL_1 and the corresponding
ImplementationDataType has element IPVAL_1, the software flags the mismatch and instructs
you to rename the elements to match.

 Limitations and Tips

3-39

AUTOSAR Component Development

• “AUTOSAR Component Configuration” on page 4-3
• “Configure AUTOSAR Elements and Properties” on page 4-8
• “Map AUTOSAR Elements for Code Generation” on page 4-50
• “Map Calibration Data for Submodels Referenced from AUTOSAR Component Models”

on page 4-65
• “Incrementally Update AUTOSAR Mapping After Model Changes” on page 4-74
• “Design and Simulate AUTOSAR Components and Generate Code” on page 4-77
• “Configure AUTOSAR Packages” on page 4-84
• “Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”

on page 4-93
• “Configure AUTOSAR Sender-Receiver Communication” on page 4-95
• “Configure AUTOSAR Queued Sender-Receiver Communication” on page 4-111
• “Configure AUTOSAR Ports By Using Simulink Bus Ports” on page 4-137
• “Configure AUTOSAR Client-Server Communication” on page 4-142
• “Configure AUTOSAR Mode-Switch Communication” on page 4-162
• “Configure AUTOSAR Nonvolatile Data Communication” on page 4-169
• “Configure AUTOSAR Port Parameters for Communication with Parameter Component”

on page 4-171
• “Configure Receiver for AUTOSAR External Trigger Event Communication” on page 4-175
• “Configure AUTOSAR Runnables and Events” on page 4-178
• “Configure AUTOSAR Runnable Execution Order” on page 4-181
• “Configure AUTOSAR Initialize, Reset, or Terminate Runnables” on page 4-187
• “Add Top-Level Asynchronous Trigger to Periodic Rate-Based System” on page 4-193
• “Configure AUTOSAR Initialization Runnable (R4.1)” on page 4-196
• “Configure Disabled Mode for AUTOSAR Runnable Event” on page 4-198
• “Configure Internal Data Types for AUTOSAR IncludedDataTypeSets” on page 4-199
• “Configure AUTOSAR Per-Instance Memory” on page 4-201
• “Configure AUTOSAR Static Memory” on page 4-206
• “Configure AUTOSAR Constant Memory” on page 4-210
• “Configure AUTOSAR Shared or Per-Instance Parameters” on page 4-212
• “Configure Variants for AUTOSAR Ports and Runnables” on page 4-217
• “Configure Variants for AUTOSAR Runnable Implementations” on page 4-220
• “Export Variation Points for AUTOSAR Calibration Data” on page 4-223
• “Configure Dimension Variants for AUTOSAR Array Sizes” on page 4-225
• “Control AUTOSAR Variants with Predefined Value Combinations” on page 4-227
• “Configure Postbuild Variant Conditions for AUTOSAR Software Components” on page 4-229

4

• “Configure Variant Parameter Values for AUTOSAR Elements” on page 4-232
• “Configure AUTOSAR CompuMethods” on page 4-236
• “Configure AUTOSAR Data Types Export” on page 4-244
• “Automatic AUTOSAR Data Type Generation” on page 4-249
• “Configure Parameters and Signals for AUTOSAR Calibration and Measurement” on page 4-251
• “Configure Subcomponent Data for AUTOSAR Calibration and Measurement” on page 4-256
• “Configure AUTOSAR Data for Calibration and Measurement” on page 4-263
• “Configure Lookup Tables for AUTOSAR Calibration and Measurement” on page 4-274
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294
• “AUTOSAR Property and Map Function Examples” on page 4-300
• “Limitations and Tips” on page 4-318

4 AUTOSAR Component Development

4-2

AUTOSAR Component Configuration

After you create an AUTOSAR software component model in Simulink, use the Code Mappings editor
and the AUTOSAR Dictionary to further develop the AUTOSAR component. The Code Mappings
editor and the AUTOSAR Dictionary provide mapping and properties views of the component model,
which can be used separately and together to configure the AUTOSAR component:

• Code Mappings editor — Using a tabbed table format, displays entry-point functions, inports,
outports, and other Simulink elements relevant to your AUTOSAR platform. Use this view to map
model elements to AUTOSAR component elements from a Simulink model perspective.

• AUTOSAR Dictionary — Using a tree format, displays a mapped AUTOSAR component and its
elements, communication interfaces, computation methods, software address methods, and XML
options. Use this view to configure AUTOSAR elements from an AUTOSAR component perspective.

Alternatively, you can configure AUTOSAR mapping and properties programmatically. See “Configure
and Map AUTOSAR Component Programmatically” on page 4-294.

In a model for which an AUTOSAR system target file (autosar.tlc or autosar_adaptive.tlc) is
selected, create or open a mapped view of the AUTOSAR model. In the model window, do one of the
following:

• From the Apps tab, open the AUTOSAR Component Designer app.
• Click the perspective control in the lower-right corner and select Code.

If the model has not yet been mapped to an AUTOSAR software component, the AUTOSAR
Component Quick Start opens. To configure the model for AUTOSAR component development, work
through the quick-start procedure and click Finish. For more information, see “Create Mapped
AUTOSAR Component with Quick Start” on page 3-2.

The model opens in the AUTOSAR Code perspective. This perspective displays the model and directly
below the model, the Code Mappings editor. Here are the perspectives for the Classic and Adaptive
Platforms.

 AUTOSAR Component Configuration

4-3

4 AUTOSAR Component Development

4-4

The Code Mappings editor provides in-canvas access to AUTOSAR mapping information, with batch
editing, element filtering, easy navigation to model elements and AUTOSAR properties, and model
element traceability. To view and modify additional AUTOSAR attributes for an element, select the

element and click the icon.

To open an AUTOSAR properties view of the component model, either click the AUTOSAR
Dictionary button in the Code Mappings editor or, on the AUTOSAR tab, select Code Interface
> AUTOSAR Dictionary. The AUTOSAR Dictionary opens.

 AUTOSAR Component Configuration

4-5

As you progressively configure the model representation of the AUTOSAR component, you can:

• Freely switch between the Simulink and AUTOSAR perspectives, by selecting AUTOSAR tab
menu entries or by clicking buttons.

• Use the Filter contents field (where available) to selectively display some elements, while
omitting others, in the current view.

• In the Code Mappings editor, click the Update button to update the Simulink to AUTOSAR
mapping of the model with changes to Simulink entry-point functions, data transfers, and function
callers.

• In the Code Mappings editor, click the Validate button to validate the AUTOSAR component
configuration.

•
In the Code Mappings editor, with an element selected, click the Edit icon to view and modify
additional AUTOSAR attributes for the element.

4 AUTOSAR Component Development

4-6

See Also

Related Examples
• “Map AUTOSAR Elements for Code Generation” on page 4-50
• “Configure AUTOSAR Elements and Properties” on page 4-8
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294

 AUTOSAR Component Configuration

4-7

Configure AUTOSAR Elements and Properties

In Simulink, you can use the AUTOSAR Dictionary and the Code Mappings editor separately or
together to graphically configure an AUTOSAR software component and map Simulink model
elements to AUTOSAR component elements. For more information, see “AUTOSAR Component
Configuration” on page 4-3.

Use the AUTOSAR Dictionary to configure AUTOSAR elements from an AUTOSAR perspective. Using
a tree format, the AUTOSAR Dictionary displays a mapped AUTOSAR component and its elements,
communication interfaces, computation methods, software address methods, and XML options. Use
the tree to select AUTOSAR elements and configure their properties. The properties that you modify
are reflected in exported ARXML descriptions and potentially in generated AUTOSAR-compliant C
code.

In this section...
“AUTOSAR Elements Configuration Workflow” on page 4-8
“Configure AUTOSAR Atomic Software Components” on page 4-9
“Configure AUTOSAR Ports” on page 4-12
“Configure AUTOSAR Runnables” on page 4-21
“Configure AUTOSAR Inter-Runnable Variables” on page 4-25
“Configure AUTOSAR Parameters” on page 4-26
“Configure AUTOSAR Communication Interfaces” on page 4-27
“Configure AUTOSAR Computation Methods” on page 4-40
“Configure AUTOSAR SwAddrMethods” on page 4-42
“Configure AUTOSAR XML Options” on page 4-43

AUTOSAR Elements Configuration Workflow
To configure AUTOSAR component elements for the Classic Platform in Simulink:

1 Open a model for which AUTOSAR system target file autosar.tlc is selected.
2 Create or open a mapped view of the AUTOSAR model. In the model window, do one of the

following:

• From the Apps tab, open the AUTOSAR Component Designer app.
• Click the perspective control in the lower-right corner and select Code.

If the model has not yet been mapped to an AUTOSAR software component, the AUTOSAR
Component Quick Start opens. Work through the quick-start procedure and click Finish. For
more information, see “Create Mapped AUTOSAR Component with Quick Start” on page 3-2.

The model opens in the AUTOSAR Code perspective. This perspective displays the model and
directly below the model, the Code Mappings editor.

3 Open the AUTOSAR Dictionary. Either click the AUTOSAR Dictionary button in the Code
Mappings editor or, on the AUTOSAR tab, select Code Interface > AUTOSAR Dictionary.

4 AUTOSAR Component Development

4-8

4 To configure AUTOSAR elements and properties, navigate the AUTOSAR Dictionary tree. You can
add elements, remove elements, or select elements to view and modify their properties. Use the
Filter Contents field (where available) to selectively display some elements, while omitting
others, in the current view.

5 After configuring AUTOSAR elements and properties, open the Code Mappings editor. Use the
Code Mapping tabs to map Simulink elements to new or modified AUTOSAR elements.

6 Click the Validate button to validate the AUTOSAR component configuration. If errors are
reported, address them and then retry validation.

Configure AUTOSAR Atomic Software Components
AUTOSAR atomic software components contain AUTOSAR elements defined in the AUTOSAR
standard, such as ports, runnables, inter-runnable variables (IRVs), and parameters. In the AUTOSAR
Dictionary, component elements appear in a tree format under the component that owns them. To
access component elements and their properties, you expand the component name.

 Configure AUTOSAR Elements and Properties

4-9

To configure AUTOSAR atomic software component elements and properties:

1 Open a model for which a mapped AUTOSAR software component has been created. For more
information, see “Component Creation”.

2 From the Apps tab, open the AUTOSAR Component Designer app.
3 Open the AUTOSAR Dictionary. Either click the AUTOSAR Dictionary button in the Code

Mappings editor or, on the AUTOSAR tab, select Code Interface > AUTOSAR Dictionary.
4 In the leftmost pane of the AUTOSAR Dictionary, under AUTOSAR, select AtomicComponents.

The atomic components view in the AUTOSAR Dictionary displays atomic components and their
types. You can:

• Select an AUTOSAR component and select a menu value for its kind (that is, its atomic
software component type):

• Application for application component
• ComplexDeviceDriver for complex device driver component
• EcuAbstraction for ECU abstraction component
• SensorActuator for sensor or actuator component
• ServiceProxy for service proxy component

• Rename a component by editing its name text.

4 AUTOSAR Component Development

4-10

5 In the leftmost pane of the AUTOSAR Dictionary, expand AtomicComponents and select an
AUTOSAR component.

The component view in the AUTOSAR Dictionary displays the name and type of the selected
component, and component options for ARXML file export. You can:

• Modify the internal behavior qualified name to be generated for the component. Specify an
AUTOSAR package path and a name.

• Modify the implementation qualified name to be generated for the component. Specify an
AUTOSAR package path and a name.

• Modify the AUTOSAR package to be generated for the component. To specify the AUTOSAR
package path, you can do either of the following:

• Enter a package path in the Package parameter field. Package paths can use an
organizational naming pattern, such as /CompanyName/Powertrain.

• Click the button to the right of the Package field to open the AUTOSAR Package Browser.
Use the browser to navigate to an existing package or create a new package. When you
select a package in the browser and click Apply, the component Package parameter value
is updated with your selection. For more information about the AUTOSAR Package
Browser, see “Configure AUTOSAR Package for Component, Interface, CompuMethod, or
SwAddrMethod” on page 4-93.

For more information about component XML options, see “Configure AUTOSAR Packages” on
page 4-84.

 Configure AUTOSAR Elements and Properties

4-11

Configure AUTOSAR Ports
An AUTOSAR software component contains communication ports defined in the AUTOSAR standard,
including sender-receiver (S-R), client-server (C-S), mode-switch (M-S), nonvolatile (NV) data, trigger,
and parameter interfaces. In the AUTOSAR Dictionary, communication ports appear in a tree format
under the component that owns them and under a port type name. To access port elements and their
properties, you expand the component name and expand the port type name.

• “Sender-Receiver Ports” on page 4-12
• “Mode-Switch Ports” on page 4-14
• “Client-Server Ports” on page 4-16
• “Nonvolatile Data Ports” on page 4-17
• “Parameter Receiver Ports” on page 4-19
• “Trigger Receiver Ports” on page 4-20

Sender-Receiver Ports

The AUTOSAR Dictionary views of sender and receiver ports support modeling AUTOSAR sender-
receiver (S-R) communication in Simulink. You use the AUTOSAR Dictionary to configure AUTOSAR
S-R ports, S-R interfaces, and S-R data elements in your model. For more information, see “Configure
AUTOSAR Sender-Receiver Communication” on page 4-95 and “Configure AUTOSAR Queued
Sender-Receiver Communication” on page 4-111.

To configure AUTOSAR S-R port elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, expand the component name and select
ReceiverPorts.

4 AUTOSAR Component Development

4-12

The receiver ports view in the AUTOSAR Dictionary lists receiver ports and their properties. You
can:

• Select an AUTOSAR receiver port, and view and optionally reselect its associated S-R
interface.

• Rename a receiver port by editing its name text.
• When you select a receiver port, the AUTOSAR Dictionary displays additional port

communication specification (ComSpec) attributes. For nonqueued receiver ports, you can
modify ComSpec attributes AliveTimeout, HandleNeverReceived, and InitValue. For
queued receiver ports, you can modify ComSpec attribute QueueLength. For more
information, see “Configure AUTOSAR Sender-Receiver Port ComSpecs” on page 4-107.

•
To add a receiver port, click the Add button and use the Add Ports dialog box. Specify a
port name and associate it with an existing S-R interface.

•
To remove a receiver port, select the port and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, select SenderPorts.

The sender ports view in the AUTOSAR Dictionary lists sender ports and their properties. You
can:

• Select an AUTOSAR sender port, and view and optionally reselect its associated S-R interface.
• Rename a sender port by editing its name text.
• When you select a sender port, the AUTOSAR Dictionary displays additional port

communication specification (ComSpec) attributes. For nonqueued sender ports, you can
modify ComSpec attribute InitValue. For more information, see “Configure AUTOSAR
Sender-Receiver Port ComSpecs” on page 4-107.

•
To add a sender port, click the Add button and use the Add Ports dialog box. Specify a
port name and associate it with an existing S-R interface.

•
To remove a sender port, select the port and then click the Delete button .

 Configure AUTOSAR Elements and Properties

4-13

3 In the leftmost pane of the AUTOSAR Dictionary, select SenderReceiverPorts.

The sender-receiver ports view in the AUTOSAR Dictionary lists sender-receiver ports and their
properties. You can:

• Select an AUTOSAR sender-receiver port, and view and optionally reselect its associated S-R
interface.

• Rename a sender-receiver port by editing its name text.
•

To add a sender-receiver port, click the Add button and use the Add Ports dialog box.
Specify a port name and associate it with an existing S-R interface.

•
To remove a sender-receiver port, select the port and then click the Delete button .

Note AUTOSAR sender-receiver ports require AUTOSAR schema version 4.1 or higher. To select
a schema version for the model, go to AUTOSAR Code Generation Options (Embedded Coder)
in the Configuration Parameters dialog box.

Mode-Switch Ports

The AUTOSAR Dictionary views of mode sender and receiver ports support modeling AUTOSAR
mode-switch (M-S) communication in Simulink. You use the AUTOSAR Dictionary to configure
AUTOSAR M-S ports and M-S interfaces in your model. For more information, see “Configure
AUTOSAR Mode-Switch Communication” on page 4-162.

4 AUTOSAR Component Development

4-14

To configure AUTOSAR M-S port elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, expand the component name and select
ModeReceiverPorts.

The mode receiver ports view in the AUTOSAR Dictionary lists mode receiver ports and their
properties. You can:

• Select an AUTOSAR mode receiver port, and view and optionally reselect its associated M-S
interface.

• Rename a mode receiver port by editing its name text.
•

To add a mode receiver port, click the Add button and use the Add Ports dialog box.
Specify a port name and associate it with an existing M-S interface. If an M-S interface does
not exist in the component, you must create one before adding the port.

•
To remove a mode receiver port, select the port and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, select ModeSenderPorts.

The mode sender ports view in the AUTOSAR Dictionary lists mode sender ports and their
properties. You can:

• Select an AUTOSAR mode sender port, and view and optionally reselect its associated M-S
interface.

• Rename a mode sender port by editing its name text.
•

To add a mode sender port, click the Add button and use the Add Ports dialog box.
Specify a port name and associate it with an existing M-S interface. If an M-S interface does
not exist in the component, you must create one before adding the port.

•
To remove a mode sender port, select the port and then click the Delete button .

 Configure AUTOSAR Elements and Properties

4-15

Client-Server Ports

The AUTOSAR Dictionary views of client and server ports support modeling AUTOSAR client-server
(C-S) communication in Simulink. You use the AUTOSAR Dictionary to configure AUTOSAR C-S ports,
C-S interfaces, and C-S operations in your model. For more information, see “Configure AUTOSAR
Client-Server Communication” on page 4-142.

To configure AUTOSAR C-S port elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, expand the component name and select
ClientPorts.

The client ports view in the AUTOSAR Dictionary lists client ports and their properties. You can:

• Select an AUTOSAR client port, and view and optionally reselect its associated C-S interface.
• Rename a client port by editing its name text.
•

To add a client port, click the Add button and use the Add Ports dialog box. Specify a port
name and associate it with an existing C-S interface. If a C-S interface does not exist in the
component, you must create one before adding the port.

•
To remove a client port, select the port and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, select ServerPorts.

The server ports view in the AUTOSAR Dictionary lists server ports and their properties. You can:

• Select an AUTOSAR server port, and view and optionally reselect its associated C-S interface.
• Rename a server port by editing its name text.
•

To add a server port, click the Add button and use the Add Ports dialog box. Specify a
port name and associate it with an existing C-S interface. If a C-S interface does not exist in
the component, you must create one before adding the port.

•
To remove a server port, select the port and then click the Delete button .

4 AUTOSAR Component Development

4-16

Nonvolatile Data Ports

The AUTOSAR Dictionary views of nonvolatile (NV) sender and receiver ports support modeling
AUTOSAR NV data communication in Simulink. You use the AUTOSAR Dictionary to configure
AUTOSAR NV ports, NV interfaces, and NV data elements in your model. For more information, see
“Configure AUTOSAR Nonvolatile Data Communication” on page 4-169.

To configure AUTOSAR NV port elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, expand the component name and select
NvReceiverPorts.

The NV receiver ports view in the AUTOSAR Dictionary lists NV receiver ports and their
properties. You can:

• Select an AUTOSAR NV receiver port, and view and optionally reselect its associated NV data
interface.

• Rename an NV receiver port by editing its name text.
•

To add an NV receiver port, click the Add button and use the Add Ports dialog box.
Specify a port name and associate it with an existing NV interface.

•
To remove an NV receiver port, select the port and then click the Delete button .

 Configure AUTOSAR Elements and Properties

4-17

2 In the leftmost pane of the AUTOSAR Dictionary, select NvSenderPorts.

The NV sender ports view in the AUTOSAR Dictionary lists NV sender ports and their properties.
You can:

• Select an AUTOSAR NV sender port, and view and optionally reselect its associated NV data
interface.

• Rename an NV sender port by editing its name text.
•

To add an NV sender port, click the Add button and use the Add Ports dialog box. Specify
a port name and associate it with an existing NV interface.

•
To remove an NV sender port, select the port and then click the Delete button .

3 In the leftmost pane of the AUTOSAR Dictionary, select NvSenderReceiverPorts.

The NV sender-receiver ports view in the AUTOSAR Dictionary lists NV sender-receiver ports
and their properties. You can:

• Select an AUTOSAR NV sender-receiver port, and view and optionally reselect its associated
NV data interface.

• Rename an NV sender-receiver port by editing its name text.
•

To add an NV sender-receiver port, click the Add button and use the Add Ports dialog
box. Specify a port name and associate it with an existing NV interface.

•
To remove an NV sender-receiver port, select the port and then click the Delete button .

Note AUTOSAR NV sender-receiver ports require AUTOSAR schema version 4.1 or higher. To
select a schema version for the model, go to AUTOSAR Code Generation Options (Embedded
Coder) in the Configuration Parameters dialog box.

4 AUTOSAR Component Development

4-18

Parameter Receiver Ports

The AUTOSAR Dictionary view of parameter receiver ports supports modeling the receiver side of
AUTOSAR parameter communication in Simulink. You use the AUTOSAR Dictionary to configure
AUTOSAR parameter receiver ports, parameter interfaces, and parameter data elements in your
model. For more information, see “Configure AUTOSAR Port Parameters for Communication with
Parameter Component” on page 4-171.

To configure AUTOSAR parameter receiver port elements and properties, open a model for which a
mapped AUTOSAR software component has been created and open the AUTOSAR Dictionary. In the
leftmost pane of the AUTOSAR Dictionary, expand the component name and select
ParameterReceiverPorts.

The parameter receiver ports view in the AUTOSAR Dictionary lists parameter receiver ports and
their properties. You can:

• Select an AUTOSAR parameter receiver port, and view and optionally reselect its associated
parameter interface.

• Rename a parameter receiver port by editing its name text.
•

To add a parameter receiver port, click the Add button and use the Add Ports dialog box.
Specify a port name and associate it with an existing parameter interface.

•
To remove a parameter receiver port, select the port and then click the Delete button .

 Configure AUTOSAR Elements and Properties

4-19

Trigger Receiver Ports

The AUTOSAR Dictionary view of trigger receiver ports supports modeling the receiver side of
AUTOSAR trigger communication in Simulink. You use the AUTOSAR Dictionary to configure
AUTOSAR trigger receiver ports, trigger interfaces, and triggers in your model. For more
information, see “Configure Receiver for AUTOSAR External Trigger Event Communication” on page
4-175.

To configure AUTOSAR trigger receiver port elements and properties, open a model for which a
mapped AUTOSAR software component has been created and open the AUTOSAR Dictionary. In the
leftmost pane of the AUTOSAR Dictionary, expand the component name and select
TriggerReceiverPorts.

The trigger receiver ports view in the AUTOSAR Dictionary lists trigger receiver ports and their
properties. You can:

• Select an AUTOSAR trigger receiver port, and view and optionally reselect its associated trigger
interface.

• Rename a trigger receiver port by editing its name text.
•

To add a trigger receiver port, click the Add button and use the Add Ports dialog box. Specify
a port name and associate it with an existing trigger interface.

•
To remove a trigger receiver port, select the port and then click the Delete button .

4 AUTOSAR Component Development

4-20

Configure AUTOSAR Runnables

The Runnables view in the AUTOSAR Dictionary supports modeling AUTOSAR runnable entities
(runnables) and events, which implement aspects of internal AUTOSAR component behavior, in
Simulink. You use the AUTOSAR Dictionary to configure AUTOSAR runnables and associated events
that activate them. For more information, see “Configure AUTOSAR Runnables and Events” on page
4-178.

In the AUTOSAR Dictionary, runnables appear in a tree format under the component that owns them.
To access runnable and event elements and their properties, you expand the component name.

To configure AUTOSAR runnable and event elements and properties, open a model for which a
mapped AUTOSAR software component has been created and open the AUTOSAR Dictionary. In the
leftmost pane of the AUTOSAR Dictionary, expand the component name and select Runnables.

The runnables view in the AUTOSAR Dictionary lists runnables for the AUTOSAR component. You
can:

• Rename an AUTOSAR runnable by editing its name text.
• Modify the symbol name for a runnable. The specified AUTOSAR runnable symbol-name is

exported in ARXML and C code. For example, if you change the symbol-name of Runnable1 from
Runnable1 to test_symbol, the symbol-name test_symbol appears in the exported ARXML
and C code. Here is a sample of the exported ARXML descriptions:
<RUNNABLE-ENTITY UUID="...">
 <SHORT-NAME>Runnable1</SHORT-NAME>
...
 <SYMBOL>test_symbol</SYMBOL>
...
</RUNNABLE-ENTITY>

Here is a sample of the generated C code:
/* Model step function for TID1 */
void test_symbol(void) /* Explicit Task: Runnable1 */
{
...
}

 Configure AUTOSAR Elements and Properties

4-21

Note For an AUTOSAR server runnable — that is, a runnable with an OperationInvokedEvent
— the symbol name must match the Simulink server function name.

• For an AUTOSAR server runnable, set the runnable property canBeInvokedConcurrently to
designate whether to enforce concurrency constraints. For nonserver runnables, leave
canBeInvokedConcurrently set to false. For more information, see “Concurrency Constraints
for AUTOSAR Server Runnables” on page 4-159.

•
To add a runnable, click the Add button .

•
To remove a runnable, select the runnable and then click the Delete button .

Select a runnable to see its list of associated events. The Events pane lists each AUTOSAR event with
its type — TimingEvent, DataReceivedEvent, ModeSwitchEvent, OperationInvokedEvent,
InitEvent, DataReceiveErrorEvent, or ExternalTriggerOccurredEvent — and name. You
can rename an AUTOSAR event by editing its name text. You can use the buttons Add Event and
Delete Event to add or delete events from a runnable.

If you select an event of type DataReceivedEvent, the runnable is activated by a
DataReceivedEvent. Select the event name to display its Trigger property. Select a trigger for the
event from the list of available trigger ports.

4 AUTOSAR Component Development

4-22

If you select an event of type DataReceiveErrorEvent, the runnable is activated by a
DataReceiveErrorEvent. Select the event name to display its Trigger property. Select a trigger
for the event from the list of available trigger ports. (For more information on using a
DataReceiveErrorEvent, see “Configure AUTOSAR Receiver Port for DataReceiveErrorEvent” on
page 4-105.)

If you select an event of type ModeSwitchEvent, the Mode Activation and Mode Receiver Port
properties are displayed. Select a mode receiver port for the event from the list of configured mode-
receiver ports. Select a mode activation value for the event from the list of values (OnEntry, OnExit,
or OnTransition). Based on the value you select, one or two Mode Declaration drop-down lists
appear. Select a mode (or two modes) for the event, among those declared by the mode declaration
group associated with the Simulink inport that models the AUTOSAR mode-receiver port. (For more
information on using a ModeSwitchEvent, see “Configure AUTOSAR Mode-Switch Communication”
on page 4-162.)

 Configure AUTOSAR Elements and Properties

4-23

If you select an event of type OperationInvokedEvent, the runnable becomes an AUTOSAR server
runnable. Select the event name to display its Trigger property. Select a trigger for the event from
the list of available server port and operation combinations. The Operation Signature is displayed
below the Trigger property. (For more information on using an OperationInvokedEvent, see
“Configure AUTOSAR Client-Server Communication” on page 4-142.)

If you select an event of type InitEvent, you can rename the event by editing its name text. (For
more information on using an InitEvent, see “Configure AUTOSAR Initialization Runnable (R4.1)”
on page 4-196.)

Note AUTOSAR InitEvents require AUTOSAR schema version 4.1 or higher. To select a schema
version for the model, go to AUTOSAR Code Generation Options (Embedded Coder) in the
Configuration Parameters dialog box.

4 AUTOSAR Component Development

4-24

If you select an event of type ExternalTriggerOccurredEvent, the runnable is activated when an
AUTOSAR software component or service signals an external trigger event. Select the event name to
display its Trigger property. Select a trigger for the event from the list of available trigger receiver
port and trigger combinations. (For more information on using an
ExternalTriggerOccurredEvent, see “Configure Receiver for AUTOSAR External Trigger Event
Communication” on page 4-175.)

Configure AUTOSAR Inter-Runnable Variables

The IRV view in the AUTOSAR Dictionary supports modeling AUTOSAR inter-runnable variables
(IRVs), which connect runnables and implement aspects of internal AUTOSAR component behavior, in
Simulink. You use the AUTOSAR Dictionary to create AUTOSAR IRVs and configure IRV data
properties. For more information, see “Configure AUTOSAR Data for Calibration and Measurement”
on page 4-263.

In the AUTOSAR Dictionary, IRVs appear in a tree format under the component that owns them. To
access IRV elements and their properties, you expand the component name.

To configure AUTOSAR IRV elements and properties, open a model for which a mapped AUTOSAR
software component has been created and open the AUTOSAR Dictionary. In the leftmost pane of the
AUTOSAR Dictionary, expand the component name and select IRV.

The IRV view in the AUTOSAR Dictionary lists IRVs for the AUTOSAR component. You can:

• Rename an AUTOSAR IRV by editing its name text.
• Specify the level of calibration and measurement tool access to IRV data. Select an IRV and set its

SwCalibrationAccess value to ReadOnly, ReadWrite, or NotAccessible.

 Configure AUTOSAR Elements and Properties

4-25

• Optionally specify the format to be used by calibration and measurement tools to display the IRV
data. In the DisplayFormat field, enter an ANSI® C printf format specifier string. For example,
%2.1d specifies a signed decimal number, with a minimum width of 2 characters and a maximum
precision of 1 digit, producing a displayed value such as 12.2. For more information about
constructing a format specifier string, see “Configure DisplayFormat” on page 4-265.

• Optionally specify a software address method for the IRV data. Select or enter a value for
SwAddrMethod. AUTOSAR software components use SwAddrMethods to group data in memory
for access by calibration and measurement tools. For more information, see “Configure AUTOSAR
SwAddrMethods” on page 4-42.

•
To add an IRV, click the Add button .

•
To remove an IRV, select the IRV and then click the Delete button .

Configure AUTOSAR Parameters

The Parameters view in the AUTOSAR Dictionary supports modeling AUTOSAR internal calibration
parameters, for use with AUTOSAR integrated and distributed lookups, in Simulink. You use the
AUTOSAR Dictionary to create AUTOSAR internal parameters and configure parameter data
properties. For port-based calibration parameters, you create “Parameter Interfaces” on page 4-36.

In the AUTOSAR Dictionary, internal parameters appear in a tree format under the component that
owns them. To access parameter elements and their properties, you expand the component name.

To configure AUTOSAR parameter elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary. In the leftmost
pane of the AUTOSAR Dictionary, expand the component name and select Parameters.

The parameters view in the AUTOSAR Dictionary lists internal parameters for the AUTOSAR
component. You can:

• Rename an AUTOSAR parameter by editing its name text.

4 AUTOSAR Component Development

4-26

• Specify the level of calibration and measurement tool access to parameters. Select a parameter
and set its SwCalibrationAccess value to ReadOnly, ReadWrite, or NotAccessible.

• Optionally specify the format to be used by calibration and measurement tools to display the
parameter data. In the DisplayFormat field, enter an ANSI C printf format specifier string. For
example, %2.1d specifies a signed decimal number, with a minimum width of 2 characters and a
maximum precision of 1 digit, producing a displayed value such as 12.2. For more information
about constructing a format specifier string, see “Configure DisplayFormat” on page 4-265.

• Optionally specify a software address method for the parameter data. Select or enter a value for
SwAddrMethod. AUTOSAR software components use SwAddrMethods to group data in memory
for access by calibration and measurement tools. For more information, see “Configure AUTOSAR
SwAddrMethods” on page 4-42.

•
To add an internal parameter, click the Add button .

•
To remove an internal parameter, select the parameter and then click the Delete button .

Configure AUTOSAR Communication Interfaces
An AUTOSAR software component uses communication interfaces defined in the AUTOSAR standard,
including sender-receiver (S-R), client-server (C-S), mode-switch (M-S), nonvolatile (NV) data, trigger,
and parameter interfaces. In the AUTOSAR Dictionary, communication interfaces appear in a tree
format under the interface type name. To access interface elements and their properties, you expand
the interface type name.

• “Sender-Receiver Interfaces” on page 4-28
• “Mode-Switch Interfaces” on page 4-29
• “Client-Server Interfaces” on page 4-31
• “Nonvolatile Data Interfaces” on page 4-34
• “Parameter Interfaces” on page 4-36
• “Trigger Interfaces” on page 4-38

 Configure AUTOSAR Elements and Properties

4-27

Sender-Receiver Interfaces

The S-R Interfaces view in the AUTOSAR Dictionary supports modeling AUTOSAR sender-receiver
(S-R) communication in Simulink. You use the AUTOSAR Dictionary to configure AUTOSAR S-R ports,
S-R interfaces, and S-R data elements in your model. For more information, see “Configure AUTOSAR
Sender-Receiver Communication” on page 4-95 and “Configure AUTOSAR Queued Sender-Receiver
Communication” on page 4-111.

To configure AUTOSAR S-R interface elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, select S-R Interfaces.

The S-R interfaces view in the AUTOSAR Dictionary lists AUTOSAR sender-receiver interfaces
and their properties. You can:

• Select an S-R interface and then select a menu value to specify whether or not it is a service.
• Rename an S-R interface by editing its name text.
•

To add an S-R interface, click the Add button and use the Add Interfaces dialog box.
Specify an interface name, the number of data elements it contains, whether the interface is a
service, and the path of the Interface package.

•
To remove an S-R interface, select the interface and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, expand S-R Interfaces and select an S-R
interface from the list.

The S-R interface view in the AUTOSAR Dictionary displays the name of the selected S-R
interface, whether or not it is a service, and the AUTOSAR package to be generated for the
interface.

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser.

Use the browser to navigate to an existing package or create a new package. When you select
a package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

4 AUTOSAR Component Development

4-28

3 In the leftmost pane of the AUTOSAR Dictionary, expand the selected interface and select
DataElements.

The data elements view in the AUTOSAR Dictionary lists AUTOSAR sender-receiver interface
data elements and their properties. You can:

• Select an S-R interface data element and edit its name value.
• Specify the level of calibration and measurement tool access to S-R interface data elements.

Select a data element and set its SwCalibrationAccess value to ReadOnly, ReadWrite, or
NotAccessible.

• Optionally specify the format to be used by calibration and measurement tools to display the
data element. In the DisplayFormat field, enter an ANSI C printf format specifier string.
For example, %2.1d specifies a signed decimal number, with a minimum width of 2 characters
and a maximum precision of 1 digit, producing a displayed value such as 12.2. For more
information about constructing a format specifier string, see “Configure DisplayFormat” on
page 4-265.

• Optionally specify a software address method for the data element. Select or enter a value for
SwAddrMethod. AUTOSAR software components use SwAddrMethods to group data in
memory for access by calibration and measurement tools. For more information, see
“Configure AUTOSAR SwAddrMethods” on page 4-42.

•
To add a data element, click the Add button .

•
To remove a data element, select the data element and then click the Delete button .

Mode-Switch Interfaces

The M-S Interfaces view in the AUTOSAR Dictionary supports modeling AUTOSAR mode-switch (M-
S) communication in Simulink. You use the AUTOSAR Dictionary to configure AUTOSAR M-S ports

 Configure AUTOSAR Elements and Properties

4-29

and M-S interfaces in your model. For more information, see “Configure AUTOSAR Mode-Switch
Communication” on page 4-162.

To configure AUTOSAR M-S interface elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, select M-S Interfaces.

The M-S interfaces view in the AUTOSAR Dictionary lists AUTOSAR mode-switch interfaces and
their properties. You can:

• Select an M-S interface, specify whether or not it is a service, and modify the name of its
associated mode group.

• The IsService property defaults to true. The true setting assumes that the M-S interface
participates in run-time mode management, for example, performed by the Basic Software
Mode Manager.

• A mode group contains mode values, declared in Simulink using enumeration. For more
information, see “Configure AUTOSAR Mode-Switch Communication” on page 4-162.

• Rename an M-S interface by editing its name text.
•

To add an M-S interface, click the Add button and use the Add Interfaces dialog box.
Specify an interface name, the name of a mode group, whether the interface is a service, and
the path of the Interface package.

•
To remove an M-S interface, select the interface and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, expand M-S Interfaces and select an M-S
interface from the list.

The M-S interface view in the AUTOSAR Dictionary displays the name of the selected M-S
interface, whether or not it is a service, its associated mode group, and the AUTOSAR package
for the interface.

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser.

Use the browser to navigate to an existing package or create a new package. When you select
a package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

4 AUTOSAR Component Development

4-30

Client-Server Interfaces

The C-S Interfaces view in the AUTOSAR Dictionary supports modeling AUTOSAR client-server (C-
S) communication in Simulink. You use the AUTOSAR Dictionary to configure AUTOSAR C-S ports, C-
S interfaces, and C-S operations in your model. For more information, see “Configure AUTOSAR
Client-Server Communication” on page 4-142.

To configure AUTOSAR C-S interface elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, select C-S Interfaces.

The C-S interfaces view in the AUTOSAR Dictionary lists AUTOSAR client-server interfaces and
their properties. You can:

• Select a C-S interface and then select a menu value to specify whether or not it is a service.
• Rename a C-S interface by editing its name text.
•

To add a C-S interface, click the Add button and use the Add Interfaces dialog box.
Specify an interface name, the number of associated operations it contains, whether the
interface is a service, and the path of the Interface package.

•
To remove a C-S interface, select the interface and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, expand C-S Interfaces and select a C-S
interface from the list.

The C-S interface view in the AUTOSAR Dictionary displays the name of the selected C-S
interface, whether or not it is a service, and the AUTOSAR package for the interface.

 Configure AUTOSAR Elements and Properties

4-31

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser.

Use the browser to navigate to an existing package or create a new package. When you select
a package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

3 In the leftmost pane of the AUTOSAR Dictionary, expand the selected interface and select
Operations.

The operations view in the AUTOSAR Dictionary lists AUTOSAR client-server interface
operations. You can:

• Select a C-S interface operation and edit its name value.
•

To add an operation, click the Add button and use the Add Operation dialog box. In the
dialog box, specify an operation name and an associated Simulink function. To create
operation arguments from a Simulink function, select the associated Simulink function among
those present in the configuration. If you are creating an operation without arguments, select
None.

•
To remove an operation, select the operation and then click the Delete button .

4 In the leftmost pane of the AUTOSAR Dictionary, expand Operations and select an operation
from the list.

The operations view in the AUTOSAR Dictionary displays the name of the selected C-S operation.

4 AUTOSAR Component Development

4-32

5 In the leftmost pane of the AUTOSAR Dictionary, expand the selected operation and select
Arguments.

The arguments view in the AUTOSAR Dictionary lists AUTOSAR client-server operation
arguments and their properties. You can:

• Select a C-S operation argument and edit its name value.
• Specify the direction of the C-S operation argument. Set its Direction value to In, Out,

InOut, or Error. Select Error if the operation argument returns application error status.
For more information, see “Configure AUTOSAR Client-Server Error Handling” on page 4-
156.

• Specify the level of calibration and measurement tool access to C-S operation arguments.
Select an argument and set its SwCalibrationAccess value to ReadOnly, ReadWrite, or
NotAccessible.

• Optionally specify the format to be used by calibration and measurement tools to display the
argument. In the DisplayFormat field, enter an ANSI C printf format specifier string. For
example, %2.1d specifies a signed decimal number, with a minimum width of 2 characters
and a maximum precision of 1 digit, producing a displayed value such as 12.2. For more
information about constructing a format specifier string, see “Configure DisplayFormat” on
page 4-265.

• Optionally specify a software address method for the argument. Select or enter a value for
SwAddrMethod. AUTOSAR software components use SwAddrMethods to group data in
memory for access by calibration and measurement tools. For more information, see
“Configure AUTOSAR SwAddrMethods” on page 4-42.

•
To add an argument, click the Add button .

•
To remove an argument, select the argument and then click the Delete button .

 Configure AUTOSAR Elements and Properties

4-33

The displayed server operation arguments were created from the following Simulink Function
block.

Nonvolatile Data Interfaces

The NV Interfaces view in the AUTOSAR Dictionary supports modeling AUTOSAR nonvolatile (NV)
data communication in Simulink. You use the AUTOSAR Dictionary to configure AUTOSAR NV ports,
NV interfaces, and NV data elements in your model. For more information, see “Configure AUTOSAR
Nonvolatile Data Communication” on page 4-169.

To configure AUTOSAR NV interface elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, select NV Interfaces.

The NV interfaces view in the AUTOSAR Dictionary lists AUTOSAR NV data interfaces and their
properties. You can:

• Select an NV interface and then select a menu value to specify whether or not it is a service.
• Rename an NV interface by editing its name text.
•

To add an NV interface, click the Add button and use the Add Interfaces dialog box.
Specify an interface name, the number of associated data elements it contains, whether the
interface is a service, and the path of the Interface package.

•
To remove an NV interface, select the interface and then click the Delete button .

4 AUTOSAR Component Development

4-34

2 In the leftmost pane of the AUTOSAR Dictionary, expand NV Interfaces and select an NV
interface from the list.

The NV interface view in the AUTOSAR Dictionary displays the name of the selected NV data
interface, whether or not it is a service, and the AUTOSAR package to be generated for the
interface.

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser.

Use the browser to navigate to an existing package or create a new package. When you select
a package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

3 In the leftmost pane of the AUTOSAR Dictionary, expand the selected interface and select
DataElements.

The data elements view in the AUTOSAR Dictionary lists AUTOSAR NV interface data elements
and their properties. You can:

• Select an NV interface data element and edit its name value.
• Specify the level of calibration and measurement tool access to the NV interface data

elements. Select a data element and set its SwCalibrationAccess value to ReadOnly,
ReadWrite, or NotAccessible.

• Optionally specify the format to be used by calibration and measurement tools to display the
data element. In the DisplayFormat field, enter an ANSI C printf format specifier string.
For example, %2.1d specifies a signed decimal number, with a minimum width of 2 characters
and a maximum precision of 1 digit, producing a displayed value such as 12.2. For more
information about constructing a format specifier string, see “Configure DisplayFormat” on
page 4-265.

• Optionally specify a software address method for the data element. Select or enter a value for
SwAddrMethod. AUTOSAR software components use SwAddrMethods to group data in
memory for access by calibration and measurement tools. For more information, see
“Configure AUTOSAR SwAddrMethods” on page 4-42.

 Configure AUTOSAR Elements and Properties

4-35

•
To add a data element, click the Add button .

•
To remove a data element, select the data element and then click the Delete button .

Parameter Interfaces

The Parameter Interfaces view in the AUTOSAR Dictionary supports modeling the receiver side of
AUTOSAR parameter communication in Simulink. You use the AUTOSAR Dictionary to configure
AUTOSAR parameter receiver ports, parameter interfaces, and parameter data elements in your
model. For more information, see “Configure AUTOSAR Port Parameters for Communication with
Parameter Component” on page 4-171.

To configure AUTOSAR parameter interface elements and properties, open a model for which a
mapped AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, select Parameter Interfaces.

The parameter interfaces view in the AUTOSAR Dictionary lists AUTOSAR parameter interfaces
and their properties. You can:

• Select a parameter interface and then select a menu value to specify whether or not it is a
service.

• Rename a parameter interface by editing its name text.
•

To add a parameter interface, click the Add button and use the Add Interfaces dialog box.
Specify an interface name, the number of associated data elements it contains, whether the
interface is a service, and the path of the Interface package.

•
To remove a parameter interface, select the interface and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, expand Parameter Interfaces and select a
parameter interface from the list.

4 AUTOSAR Component Development

4-36

The parameter interface view in the AUTOSAR Dictionary displays the name of the selected
parameter interface, whether or not it is a service, and the AUTOSAR package to generate for
the interface.

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser.

Use the browser to navigate to an existing package or create a new package. When you select
a package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

3 In the leftmost pane of the AUTOSAR Dictionary, expand the selected interface and select
DataElements.

The data elements view in the AUTOSAR Dictionary lists AUTOSAR parameter interface data
elements and their properties. You can:

• Select a parameter interface data element and edit its name value.
• Specify the level of calibration and measurement tool access to parameter interface data

elements. Select a data element and set its SwCalibrationAccess value to ReadOnly,
ReadWrite, or NotAccessible.

• Optionally specify the format to be used by calibration and measurement tools to display the
data element. In the DisplayFormat field, enter an ANSI C printf format specifier string.
For example, %2.1d specifies a signed decimal number, with a minimum width of 2 characters
and a maximum precision of 1 digit, producing a displayed value such as 12.2. For more
information about constructing a format specifier string, see “Configure DisplayFormat” on
page 4-265.

• Optionally specify a software address method for the data element. Select or enter a value for
SwAddrMethod. AUTOSAR software components use SwAddrMethods to group data in
memory for access by calibration and measurement tools. For more information, see
“Configure AUTOSAR SwAddrMethods” on page 4-42.

•
To add a data element, click the Add button .

•
To remove a data element, select the data element and then click the Delete button .

 Configure AUTOSAR Elements and Properties

4-37

Trigger Interfaces

The Trigger Interfaces view in the AUTOSAR Dictionary supports modeling the receiver side of
AUTOSAR trigger communication in Simulink. You use the AUTOSAR Dictionary to configure
AUTOSAR trigger receiver ports, trigger interfaces, and triggers in your model. For more
information, see “Configure Receiver for AUTOSAR External Trigger Event Communication” on page
4-175.

To configure AUTOSAR trigger interface elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, select Trigger Interfaces.

The trigger interfaces view in the AUTOSAR Dictionary lists AUTOSAR trigger interfaces and
their properties. You can:

• Select a trigger interface and then select a menu value to specify whether or not it is a
service.

• Rename a trigger interface by editing its name text.
•

To add a trigger interface, click the Add button and use the Add Interfaces dialog box.
Specify an interface name, the number of associated triggers it contains, whether the
interface is a service, and the path of the Interface package.

•
To remove a trigger interface, select the interface and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, expand Trigger Interfaces and select a trigger
interface from the list.

The trigger interface view in the AUTOSAR Dictionary displays the name of the selected trigger
interface, whether or not it is a service, and the AUTOSAR package to be generated for the
interface.

4 AUTOSAR Component Development

4-38

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser.

Use the browser to navigate to an existing package or create a new package. When you select
a package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

3 In the leftmost pane of the AUTOSAR Dictionary, expand the selected interface and select
Triggers.

The triggers view in the AUTOSAR Dictionary lists AUTOSAR triggers and their properties. You
can:

• Select a trigger and edit its name value.
• If the trigger is periodic, you can use CseCode and CseCodeFactor to specify a period for

the trigger. (Otherwise, leave the period unspecified.)

• To specify the time base of the period, select a value from the CseCode menu. The values
are based on ASAM codes for scaling unit (CSE).

• To specify the scaling factor for the period, enter an integer value in the CseCodeFactor
field.

For example, to specify a period of 15 milliseconds, set CseCode to CSE3 (1 millisecond) and
set CseCodeFactor to 15.

CseCode Time Base
None Unspecified (trigger is not periodic)
CSE0 1 µsec (microsecond)
CSE1 10 µsec
CSE2 100 µsec
CSE3 1 msec (millisecond)
CSE4 10 msec
CSE5 100 msec

 Configure AUTOSAR Elements and Properties

4-39

CseCode Time Base
CSE6 1 second
CSE7 10 seconds
CSE8 1 minute
CSE9 1 hour
CSE10 1 day
CSE20 1 fs (femtosecond)
CSE21 10 fs
CSE22 100 fs
CSE23 1 ps (picosecond)
CSE24 10 ps
CSE25 100 ps
CSE26 1 ns (nanosecond)
CSE27 10 ns
CSE28 100 ns
CSE100 Angular degrees
CSE101 Revolutions (1 = 360 degrees)
CSE102 Cycle (1 = 720 degrees)
CSE997 Computing cycle
CSE998 When frame available
CSE999 Always when there is a new value
CSE1000 Nondeterministic (no fixed scaling)

•
To add a trigger, click the Add button .

•
To remove a trigger, select the trigger and then click the Delete button .

Configure AUTOSAR Computation Methods
The CompuMethods view in the AUTOSAR Dictionary supports modeling AUTOSAR computation
methods (CompuMethods), which specify conversions between internal values and physical
representation of AUTOSAR data, in Simulink. You use the AUTOSAR Dictionary to create and

4 AUTOSAR Component Development

4-40

configure AUTOSAR CompuMethods. For more information, see “Configure AUTOSAR
CompuMethods” on page 4-236.

To configure AUTOSAR CompuMethod elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary. Select
CompuMethods.

The CompuMethods view in the AUTOSAR Dictionary displays CompuMethods and their properties.
You can:

• Select a CompuMethod and modify properties, such as name, category, unit, display format for
calibration and measurement, AUTOSAR package to be generated for the CompuMethod, and a
list of Simulink data types that reference the CompuMethod. For property descriptions, see
“Configure AUTOSAR CompuMethod Properties” on page 4-236.

•
To add a CompuMethod, click the Add button and use the Add CompuMethod dialog box,
which is described below.

•
To remove a CompuMethod, select the CompuMethod and then click the Delete button .

To modify the AUTOSAR package for a CompuMethod, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser. Use the

browser to navigate to an existing package or create a new package. When you select a package
in the browser and click Apply, the CompuMethod Package parameter value is updated with your
selection. For more information about the AUTOSAR Package Browser, see “Configure AUTOSAR
Package for Component, Interface, CompuMethod, or SwAddrMethod” on page 4-93.

To associate a CompuMethod with a Simulink data type used in the model, select a CompuMethod
and click the Add button to the right of Simulink DataTypes. This action opens a dialog box with a
list of available data types. To add a data type to the Simulink DataTypes list, select the data type
and click OK. To remove a data type from the Simulink DataTypes list, select the data type and
click Remove.

 Configure AUTOSAR Elements and Properties

4-41

The Add CompuMethod dialog box lets you create a CompuMethod and specify its initial properties,
such as name, category, unit, display format for calibration and measurement, AUTOSAR package to
be generated for the CompuMethod, and a Simulink data type that references the CompuMethod.

Clicking the Add button to the right of Simulink DataTypes opens the Set Simulink data type to
AUTOSAR CompuMethod dialog box. This dialog box lets you select a Simulink data type to add to
Simulink DataTypes, the list of Simulink data types that reference a CompuMethod. In the list of
available data types, select a Simulink.NumericType or Simulink.AliasType, or enter the name
of a Simulink enumerated type.

Configure AUTOSAR SwAddrMethods
The SwAddrMethods view in the AUTOSAR Dictionary supports modeling AUTOSAR software
address methods (SwAddrMethods). AUTOSAR software components use SwAddrMethods to group
data and function definitions in memory, primarily for efficiency, performance, and data access by
run-time calibration tools. In the AUTOSAR Dictionary, you can view or create AUTOSAR
SwAddrMethods and then assign SwAddrMethods to data and functions that you want to group
together. For more information, see “Configure SwAddrMethod” on page 4-268.

To configure AUTOSAR SwAddrMethod elements and properties, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary. Select
SwAddrMethods.

The SwAddrMethods view in the AUTOSAR Dictionary displays SwAddrMethods and their properties.
You can:

• Select a SwAddrMethod and modify properties, such as name, section type, and AUTOSAR
package to be generated for the SwAddrMethod.

To modify the section type, select a value from the SectionType drop-down list. The listed values
correspond to SwAddrMethod section types listed in the AUTOSAR standard.

4 AUTOSAR Component Development

4-42

SectionType Value SwAddrMethod Section Type
CalibrationVariables CALIBRATION-VARIABLES
Calprm CALPRM
Code CODE
ConfigData CONFIG-DATA
Const CONST
ExcludeFromFlash EXCLUDE-FROM-FLASH
Var VAR

•
To add a SwAddrMethod, click the Add button and use the Add SwAddrMethod dialog box.
Specify a SwAddrMethod name, a section type, and the path of the SwAddrMethod package.

•
To remove a SwAddrMethod, select the SwAddrMethod and then click the Delete button .

To modify the AUTOSAR package for a SwAddrMethod, you can do either of the following:

• Enter a package path in the Package parameter field.
• Click the button to the right of the Package field to open the AUTOSAR Package Browser. Use the

browser to navigate to an existing package or create a new package. When you select a package
in the browser and click Apply, the SwAddrMethod Package parameter value is updated with
your selection. For more information about the AUTOSAR Package Browser, see “Configure
AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod” on page 4-93.

Configure AUTOSAR XML Options
To configure AUTOSAR XML options for ARXML file export, open a model for which a mapped
AUTOSAR software component has been created and open the AUTOSAR Dictionary. Select XML
Options.

The XML options view in the AUTOSAR Dictionary displays XML export parameters and their values.
You can configure:

• XML options source (for components in architecture modeling)
• XML file packaging for AUTOSAR elements created in Simulink
• AUTOSAR package paths

 Configure AUTOSAR Elements and Properties

4-43

• AUTOSAR platform types
• Aspects of exported AUTOSAR XML content

• “XML Options Source” on page 4-44
• “Exported XML File Packaging” on page 4-44
• “AUTOSAR Package Paths” on page 4-46
• “AUTOSAR Platform Types” on page 4-46
• “Additional XML Options” on page 4-47

XML Options Source

The XML options view displays the parameter XML Options Source. If the current component
model is contained in an AUTOSAR architecture model, this parameter indicates which XML options
to use in model builds. Specify Inherit from AUTOSAR architecture model to use shared
architecture model XML option settings, which promote consistency across the model hierarchy.
Specify Inlined in this model to override the shared settings with the component model local
XML option settings.

If the current component model is not contained in an AUTOSAR architecture model, the XML
Options Source parameter has no effect.

Alternatively, you can programmatically configure the XML options source by calling the AUTOSAR
set function. For property XmlOptionsSource, specify either Inlined or Inherit. For example:
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','XmlOptionsSource','Inlined');

For more information about architecture model XML options, see “Generate and Package AUTOSAR
Composition XML Descriptions and Component Code” on page 8-36.

Exported XML File Packaging

In the XML options view, you can specify the granularity of XML file packaging for AUTOSAR
elements created in Simulink. (Imported AUTOSAR XML files retain their file structure, as described

4 AUTOSAR Component Development

4-44

in “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-
37.) Select one of the following values for Exported XML file packaging.

• Single file — Exports XML into a single file, modelname.arxml.
• Modular — Exports XML into multiple files, named according to the type of information

contained.

Exported File Name By Default Contains...
modelname_component.arxml Software components, including:

• Ports
• Events
• Runnables
• Inter-runnable variables (IRVs)
• Included data type sets
• Component-scoped parameters and variables

This is the main ARXML file exported for the Simulink model. In
addition to software components, the component file contains
packageable elements that the exporter does not move to data
type, implementation, interface, or timing files based on AUTOSAR
element category.

modelname_datatype.arxml Data types and related elements, including:

• Application data types
• Software base types
• Data type mapping sets
• Constant specifications
• Physical data constraints
• System constants
• Software address methods
• Mode declaration groups
• Computation methods
• Units and unit groups
• Software record layouts
• Internal data constraints

modelname_implementation.arxml Software component implementation, including code descriptors.
modelname_interface.arxml Interfaces, including S-R, C-S, M-S, NV, parameter, and trigger

interfaces. The interfaces include type-specific elements, such as S-
R data elements, C-S operations, port-based parameters, or
triggers.

modelname_timing.arxml Timing model, including runnable execution order constraints.

Alternatively, you can programmatically configure exported XML file packaging by calling the
AUTOSAR set function. For property ArxmlFilePackaging, specify either SingleFile or
Modular. For example:

 Configure AUTOSAR Elements and Properties

4-45

arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ArxmlFilePackaging','SingleFile');

For more information, see “Generate AUTOSAR C and XML Files” on page 5-9.

AUTOSAR Package Paths

In the XML options view, you can configure AUTOSAR packages (AR-PACKAGEs), which contain
groups of AUTOSAR elements and reside in a hierarchical AR-PACKAGE structure. (The AR-PACKAGE
structure for a component is logically distinct from the ARXML file partitioning selected with the XML
option Exported XML file packaging or imported from AUTOSAR XML files.) For more information
about AUTOSAR packages, see “Configure AUTOSAR Packages” on page 4-84.

Inspect and modify the AUTOSAR package paths:

• Grouped under the heading Package Paths.

• Grouped under the heading Additional Packages.

Alternatively, you can programmatically configure an AUTOSAR package path by calling the
AUTOSAR set function. Specify a package property name and a package path. For example:
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ApplicationDataTypePackage','/Company/Powertrain/DataTypes/ApplDataTypes');

Fore more information about AUTOSAR package property names and defaults, see “Configure
AUTOSAR Packages and Paths” on page 4-86.

AUTOSAR Platform Types

In the XML options view, you can configure aspects of the AUTOSAR platform type packaging and
naming behavior.

4 AUTOSAR Component Development

4-46

You can:

• Specify the top-level package name for AUTOSAR implementation platform types and base types
by entering the package name in the Implementation Platform Types Package field.

Implementation platform types are grouped as an ImplementationDataTypes subpackage.
Base types are grouped as a BaseTypes subpackage.

For Modular ARXML export, the top-level package and its content is exported to the stub/
modelname_platformtypes.arxml file.

• Specify the implementation data type reference behavior. Select either of the following values for
User-defined Implementation Types References:

• PlatformTypeReference — User-defined implementation data types reference an AUTOSAR
implementation data type (CATEGORY is set to TYPE_REFERENCE in the ARXML).

• BaseTypeReference — User-defined implementation data types reference an SW base type
(CATEGORY is set to VALUE in the ARXML).

• Control whether the native declaration inherits the AUTOSAR platform type name or uses a C
integral type name. Select either of the following values for Native Declaration:

• PlatformTypeName — The native declaration inherits the AUTOSAR platform type name.
• CIntegralTypeName — The native declaration uses a C integral type name according to the

hardware configuration specified in the model settings.

Alternatively, you can programmatically configure AUTOSAR platform type XML options by calling
the AUTOSAR set function. Specify a property name and value. The valid property names are
PlatformDataTypePackage, UsePlatformTypeReferences, and NativeDeclaration. For
example:
arProps = autosar.api.getAUTOSARProperties(hModel);

set(arProps,'XmlOptions','PlatformDataTypePackage','/AUTOSAR_PlatformTypes');
set(arProps,'XmlOptions','UsePlatformTypeReferences','PlatformTypeReference');
set(arProps,'XmlOptions','NativeDeclaration','PlatformTypeName');

Additional XML Options

In the XML options view, under the heading Additional Options, you can configure aspects of
exported AUTOSAR XML content.

You can:

 Configure AUTOSAR Elements and Properties

4-47

• Optionally override the default behavior for generating AUTOSAR application data types in
ARXML code. To force generation of an application data type for each AUTOSAR data type,
change the value of ImplementationDataType Reference from Allowed to NotAllowed. For
more information, see “Control Application Data Type Generation” on page 4-244.

• Control the default value of the SwCalibrationAccess property of generated AUTOSAR
measurement variables, calibration parameters, and signal and parameter data objects. Select one
of the following values for SwCalibrationAccess DefaultValue:

• ReadOnly — Read access only.
• ReadWrite (default) — Read and write access.
• NotAccessible — Not accessible with calibration and measurement tools.

For more information, see “Configure SwCalibrationAccess” on page 4-263.
• Control the direction of CompuMethod conversion for linear-function CompuMethods. Select one

of the following values for CompuMethod Direction:

• InternalToPhys (default) — Generate CompuMethod sections for conversion of internal
values into their physical representations.

• PhysToInternal — Generate CompuMethod sections for conversion of physical values into
their internal representations.

• Bidirectional — Generate CompuMethod sections for both internal-to-physical and
physical-to-internal conversion directions.

For more information, see “Configure CompuMethod Direction for Linear Functions” on page 4-
238.

• Optionally override the default behavior for generating internal data constraint information for
AUTOSAR implementation data types in ARXML code. To force export of internal data constraints
for implementation data types, select the option Internal DataConstraints Export. For more
information, see “Configure AUTOSAR Internal Data Constraints Export” on page 4-246.

Alternatively, you can programmatically configure the additional XML options by calling the
AUTOSAR set function. Specify a property name and value. The valid property names are
ImplementationTypeReference, SwCalibrationAccessDefault, CompuMethodDirection,
and InternalDataConstraintExport. For example:

arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ImplementationTypeReference','NotAllowed');
set(arProps,'XmlOptions','SwCalibrationAccessDefault','ReadOnly');
set(arProps,'XmlOptions','CompuMethodDirection','PhysToInternal');
set(arProps,'XmlOptions','InternalDataConstraintExport',true);

See Also

Related Examples
• “Map AUTOSAR Elements for Code Generation” on page 4-50
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294
• “Configure AUTOSAR Code Generation” on page 5-7

4 AUTOSAR Component Development

4-48

More About
• “AUTOSAR Component Configuration” on page 4-3

 Configure AUTOSAR Elements and Properties

4-49

Map AUTOSAR Elements for Code Generation

In Simulink, you can use the Code Mappings editor and the AUTOSAR Dictionary separately or
together to graphically configure an AUTOSAR software component and map Simulink model
elements to AUTOSAR component elements. For more information, see “AUTOSAR Component
Configuration” on page 4-3.

Use the Code Mappings editor to map Simulink model elements to AUTOSAR component elements
from a Simulink model perspective. The editor display consists of several tabbed tables, including
Functions, Inports, and Outports. Use the tables to select Simulink elements and map them to
corresponding AUTOSAR elements. The mappings that you configure are reflected in generated
AUTOSAR-compliant C code and exported ARXML descriptions.

The Code Mappings editor also provides mapping for submodels referenced from AUTOSAR software
component models. For more information, see “Map Calibration Data for Submodels Referenced from
AUTOSAR Component Models” on page 4-65.

In this section...
“Simulink to AUTOSAR Mapping Workflow” on page 4-50
“Map Entry-Point Functions to AUTOSAR Runnables” on page 4-52
“Map Inports and Outports to AUTOSAR Sender-Receiver Ports and Data Elements” on page 4-53
“Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54
“Map Data Stores to AUTOSAR Variables” on page 4-56
“Map Block Signals and States to AUTOSAR Variables” on page 4-58
“Map Data Transfers to AUTOSAR Inter-Runnable Variables” on page 4-60
“Map Function Callers to AUTOSAR Client-Server Ports and Operations” on page 4-61
“Specify C Type Qualifiers for AUTOSAR Static and Constant Memory” on page 4-61
“Specify Default Data Packaging for AUTOSAR Internal Variables” on page 4-62

Simulink to AUTOSAR Mapping Workflow
To map Simulink model elements to AUTOSAR software component elements:

1 Open a model for which AUTOSAR system target file autosar.tlc is selected.
2 Create or open a mapped view of the AUTOSAR model. In the model window, do one of the

following:

• From the Apps tab, open the AUTOSAR Component Designer app.
• Click the perspective control in the lower-right corner and select Code.

If the model has not yet been mapped to an AUTOSAR software component, the AUTOSAR
Component Quick Start opens. To configure the model for AUTOSAR component development,
work through the quick-start procedure and click Finish. For more information, see “Create
Mapped AUTOSAR Component with Quick Start” on page 3-2.

The model opens in the AUTOSAR Code perspective. This perspective displays the model and
directly below the model, the Code Mappings editor.

4 AUTOSAR Component Development

4-50

The Code Mappings editor provides in-canvas access to AUTOSAR mapping information, with
batch editing, element filtering, easy navigation to model elements and AUTOSAR properties,
and model element traceability. To view and modify additional AUTOSAR attributes for an

element, select the element and click the icon.
3 Navigate the Code Mappings editor tabs to perform these actions:

• Map a Simulink entry-point function to an AUTOSAR runnable.
• Map a Simulink inport or outport to an AUTOSAR receiver or sender port and a sender-

receiver data element, with a specific data access mode.
• Map a Simulink model workspace parameter to an AUTOSAR component parameter.
• Map a Simulink data store to an AUTOSAR variable.
• Map a Simulink block signal or state to an AUTOSAR variable.
• Map a Simulink data transfer line to an AUTOSAR inter-runnable variable (IRV).
• Map a Simulink function caller to an AUTOSAR client port and a client-server operation.

 Map AUTOSAR Elements for Code Generation

4-51

Use the Filter contents field (where available) to selectively display some elements, while
omitting others, in the current view.

4 After mapping model elements, click the Validate button to validate the AUTOSAR
component configuration. If errors are reported, address them and then retry validation.

Map Entry-Point Functions to AUTOSAR Runnables
The Functions tab of the Code Mappings editor supports modeling AUTOSAR runnable entities
(runnables) in Simulink. After using the AUTOSAR Dictionary to create AUTOSAR runnables and
AUTOSAR events, which implement aspects of internal behavior in an AUTOSAR component, open
the Code Mappings editor. Use the Functions tab to map Simulink entry-point functions to AUTOSAR
runnables.

For more information, see “Configure AUTOSAR Runnables and Events” on page 4-178.

The Functions tab of the Code Mappings editor maps each Simulink entry-point function to an
AUTOSAR runnable. Click the Update button to load or update Simulink entry-point functions in
the model.

In the Functions tab, you can:

• Map a Simulink entry-point function by selecting the entry-point function and then selecting a
menu value for an AUTOSAR runnable, among those listed for the AUTOSAR component.

• Specify software address methods (SwAddrMethods) for the runnable function code and internal
data. If you specify SwAddrMethod names, code generation uses the names to group runnable
function and data definitions in memory sections. For more information, see “Configure
SwAddrMethod” on page 4-268.

The SwAddrMethod names must be defined in the model. For example, the example model
autosar_swc_counter defines SwAddrMethods named CODE and VAR.

To specify SwAddrMethods for a runnable, select the corresponding entry-point function and click

the icon. The dialog displays the code attributes SwAddrMethod and Internal Data
SwAddrMethod for the selected function. Select SwAddrMethod names among the valid values
listed for each property.

To create additional SwAddrMethod names in the component, use the AUTOSAR Dictionary,
SwAddrMethods view. For more information, see “Configure AUTOSAR SwAddrMethods” on page
4-42.

4 AUTOSAR Component Development

4-52

Note Code generation for runnable internal data SwAddrMethods requires setting the model
configuration option Code Generation > Interface > Generate separate internal data per entry-
point function (GroupInternalDataByFunction) to on.

Map Inports and Outports to AUTOSAR Sender-Receiver Ports and
Data Elements
The Inports and Outports tabs of the Code Mappings editor support modeling AUTOSAR sender-
receiver (S-R) communication in Simulink. After using the AUTOSAR Dictionary to create AUTOSAR
S-R ports, S-R interfaces, and S-R data elements in your model, open the Code Mappings editor. Use
the Inports and Outports tabs to map Simulink root inports and outports to AUTOSAR receiver and
sender ports and AUTOSAR S-R data elements.

For more information, see “Configure AUTOSAR Sender-Receiver Communication” on page 4-95 and
“Configure AUTOSAR Queued Sender-Receiver Communication” on page 4-111.

The Inports tab of the Code Mappings editor maps each Simulink root inport to an AUTOSAR
receiver port and an S-R interface data element. In the Inports tab, you can:

• Map a Simulink inport by selecting the inport and then selecting menu values for an AUTOSAR
port and an AUTOSAR element, among those listed for the AUTOSAR component.

• Select an AUTOSAR data access mode for the port: ImplicitReceive, ExplicitReceive,
ExplicitReceiveByVal, QueuedExplicitReceive, ErrorStatus, IsUpdated,
EndToEndRead, or ModeReceive.

To view additional port communication specification (ComSpec) attributes, select an inport and click

the icon.

• For AUTOSAR nonqueued receiver ports, you can modify ComSpec attributes AliveTimeout,
HandleNeverReceived, and InitValue.

• For queued receiver ports, you can modify ComSpec attribute QueueLength.

For more information, see “Configure AUTOSAR Sender-Receiver Port ComSpecs” on page 4-107.

The Outports tab of the Code Mappings editor maps each Simulink root outport to an AUTOSAR
sender port and an S-R interface data element. In the Outports tab, you can:

• Map a Simulink outport by selecting the outport and then selecting menu values for an AUTOSAR
port and an AUTOSAR element.

• Select an AUTOSAR data access mode for the port: ImplicitSend, ImplicitSendByRef,
ExplicitSend, QueuedExplicitSend, EndToEndWrite, or ModeSend.

 Map AUTOSAR Elements for Code Generation

4-53

To view additional port communication specification (ComSpec) attributes, select an outport that

maps to an AUTOSAR nonqueued sender port and click the icon. In the dialog, you can modify the
ComSpec attribute InitValue. For more information, see “Configure AUTOSAR Sender-Receiver
Port ComSpecs” on page 4-107.

Map Model Workspace Parameters to AUTOSAR Component
Parameters
On the Parameters tab of the Code Mappings editor, you can map Simulink model workspace
parameters to AUTOSAR parameters for AUTOSAR run-time calibration. Examples of model
workspace parameters you can map include:

• Simulink parameter objects
• Simulink lookup table objects
• Simulink breakpoint objects

By mapping lookup table and breakpoint objects to AUTOSAR calibration parameters, you can model
AUTOSAR parameters for integrated and distributed lookups. For more information, see “Configure
Lookup Tables for AUTOSAR Calibration and Measurement” on page 4-274.

After creating model workspace parameters, for example, using Model Explorer, open the Code
Mappings editor and select the Parameters tab. Select Simulink model workspace parameters and
map them to:

• AUTOSAR component internal parameters, such as constant memory, shared parameters, or per-
instance parameters.

• AUTOSAR port-based parameters, used by parameter receiver components for port-based access
to parameter data.

For more information, see “Configure AUTOSAR Constant Memory” on page 4-210, “Configure
AUTOSAR Shared or Per-Instance Parameters” on page 4-212, and “Configure AUTOSAR Port
Parameters for Communication with Parameter Component” on page 4-171.

The Parameters tab lists each Simulink model workspace parameter that you can map to an
AUTOSAR parameter. On the Parameters tab:

• If a Simulink model workspace parameter is not configured as a model argument (that is, not
unique to each instance of a multi-instance model), you can map the parameter by selecting it and
then selecting a menu value for an AUTOSAR parameter type. For this workflow, the valid
parameter types are ConstantMemory, SharedParameter, or Auto. To accept software
mapping defaults, specify Auto.

For example, here is the Parameters tab for example model autosar_swc_counter.

4 AUTOSAR Component Development

4-54

• If a Simulink model workspace parameter is configured as a model argument (that is, unique to
each instance of a multi-instance model), map the parameter by selecting it and then selecting a
menu value for an AUTOSAR parameter type. For this workflow, the valid parameter types are
PerInstanceParameter, PortParameter, or Auto. To accept software mapping defaults,
specify Auto.

For example, here is the Parameters tab for example model autosar_swc_throttle_sensor.
Example model autosar_composition contains two instances of
autosar_swc_throttle_sensor.

•
If you select a parameter type other than Auto, you can click the icon to view and modify
other code and calibration attributes for the parameter.

Attribute Purpose
Const (ConstantMemory only) Select or clear the option to indicate whether

to include C type qualifier const in generated
code for the AUTOSAR parameter. For more
information, see “Specify C Type Qualifiers for
AUTOSAR Static and Constant Memory” on
page 4-61.

Volatile (ConstantMemory only) Select or clear the option to indicate whether
to include C type qualifier volatile in
generated code for the AUTOSAR parameter.
For more information, see “Specify C Type
Qualifiers for AUTOSAR Static and Constant
Memory” on page 4-61.

AdditionalNativeTypeQualifier
(ConstantMemory only)

Specify an AUTOSAR additional native type
qualifier to include in generated code for the
AUTOSAR parameter. For example,
my_qualifier. For more information, see
“Specify C Type Qualifiers for AUTOSAR
Static and Constant Memory” on page 4-61.

 Map AUTOSAR Elements for Code Generation

4-55

Attribute Purpose
SwAddrMethod Select a SwAddrMethod name from the names

listed as valid for the AUTOSAR parameter.
For example, the model
autosar_swc_counter defines VAR. Code
generation uses the SwAddrMethod name to
group AUTOSAR parameters in a memory
section for access by calibration and
measurement tools. For more information, see
“Configure SwAddrMethod” on page 4-268.

SwCalibrationAccess Specify how calibration and measurement
tools can access the AUTOSAR parameter.
Valid access values include ReadOnly,
ReadWrite, and NotAccessible. For more
information, see “Configure
SwCalibrationAccess” on page 4-263.

DisplayFormat Specify a display format for the AUTOSAR
parameter. For example, %5.1f. AUTOSAR
display format specifications control the width
and precision display for calibration and
measurement data. For more information, see
“Configure DisplayFormat” on page 4-265.

Port (PortParameter only) Select the name of a parameter receiver port
configured in the AUTOSAR Dictionary.

DataElement (PortParameter only) Select the name of a parameter interface data
element configured in the AUTOSAR
Dictionary.

LongName Specify a description for the parameter.

Map Data Stores to AUTOSAR Variables
On the Data Stores tab of the Code Mappings editor, you can map Simulink data store memory
blocks to AUTOSAR variables for AUTOSAR run-time calibration. After creating data store memory
blocks in your model, open the Code Mappings editor and select the Data Stores tab. Select data
stores and map them to AUTOSAR variables, such as AUTOSAR-typed per-instance memory or
AUTOSAR static memory.

For more information, see “Configure AUTOSAR Per-Instance Memory” on page 4-201 and “Configure
AUTOSAR Static Memory” on page 4-206.

The Data Stores tab lists each data store that you can map to an AUTOSAR variable. You can:

• Map a Simulink data store by selecting the data store, and then selecting a menu value for an
AUTOSAR variable type: ArTypedPerInstanceMemory, StaticMemory, or Auto. To accept
software mapping defaults, specify Auto.

For example, here is the Local Data Stores tab for example model autosar_bsw_sensor1.

4 AUTOSAR Component Development

4-56

•
If you select a variable type other than Auto, you can click the icon to view and modify other
code and calibration attributes for the variable.

Attribute Purpose
ShortName Specify a short name for the AUTOSAR

variable. For example, dsmsig. If unspecified,
ARXML export generates a short name.

Volatile (StaticMemory only) Select or clear the option to indicate whether
to include C type qualifier volatile in
generated code for the AUTOSAR variable.
For more information, see “Specify C Type
Qualifiers for AUTOSAR Static and Constant
Memory” on page 4-61.

AdditionalNativeTypeQualifier
(StaticMemory only)

Specify an AUTOSAR additional native type
qualifier to include in generated code for the
AUTOSAR variable. For example,
my_qualifier. For more information, see
“Specify C Type Qualifiers for AUTOSAR
Static and Constant Memory” on page 4-61.

NeedsNVRAMAccess
(ArTypedPerInstanceMemory only)

Select or clear the option to indicate whether
the AUTOSAR variable needs access to
nonvolatile RAM on a processor. To configure
the per-instance memory to be a mirror block
for a specific NVRAM block, select the option.

SwAddrMethod Select a SwAddrMethod name from the names
listed as valid for the AUTOSAR variable.
Code generation uses the SwAddrMethod
name to group AUTOSAR variables in a
memory section for access by calibration and
measurement tools. For more information, see
“Configure SwAddrMethod” on page 4-268.

RestoreAtStart
(ArTypedPerInstanceMemory only)

Select or clear the option to indicate if the
state should be read out at startup.

StoreAtShutdown
(ArTypedPerInstanceMemory only

Select or clear the option to indicate if the
state written away at shutdown.

SwCalibrationAccess Specify how calibration and measurement
tools can access the AUTOSAR variable. Valid
access values include ReadOnly, ReadWrite,
and NotAccessible. For more information,
see “Configure SwCalibrationAccess” on page
4-263.

 Map AUTOSAR Elements for Code Generation

4-57

Attribute Purpose
DisplayFormat Specify a display format for the AUTOSAR

variable. For example, %5.1f. AUTOSAR
display format specifications control the width
and precision display for calibration and
measurement data. For more information, see
“Configure DisplayFormat” on page 4-265.

LongName Specify a description for the variable.

Map Block Signals and States to AUTOSAR Variables
On the Signals/States tab of the Code Mappings editor, you can:

• Map Simulink block signals and states to AUTOSAR variables for AUTOSAR run-time calibration.
• Selectively add or remove block signals from AUTOSAR component signal mapping.

In the Code Mappings editor, Simulink block states that correspond to state owner blocks are
available for mapping.

To make Simulink block signals available for mapping, use a Code Mappings editor button or a model
cue:

• In the model canvas, select one or more signals. Open the Code Mappings editor, Signals/States

tab, and click the Add button .
• In the model canvas, select a signal. Place your cursor over the displayed ellipsis and select model

cue Add selected signals to code mappings.

Alternatively, call MATLAB function addSignal.

After selectively adding block signals to AUTOSAR component signal mapping, open the Code
Mappings editor and select the Signals/States tab. Select block signals and states and map them to
AUTOSAR variables, such as AUTOSAR-typed per-instance memory or AUTOSAR static memory.

For more information, see “Configure AUTOSAR Per-Instance Memory” on page 4-201 and “Configure
AUTOSAR Static Memory” on page 4-206.

The Signals/States tab, Signals node, lists each Simulink block signal that you can map to an
AUTOSAR variable. You can map a Simulink block signal by selecting the signal and then selecting a
menu value for an AUTOSAR variable type: ArTypedPerInstanceMemory, StaticMemory, or
Auto. To accept software mapping defaults, specify Auto.

For example, here is the Signals/States tab for example model autosar_swc_counter.

4 AUTOSAR Component Development

4-58

The Signals/States tab, States node, lists each configurable Simulink block state that you can map
to an AUTOSAR variable. You can map a Simulink block state by selecting the state and then
selecting a menu value for an AUTOSAR variable type: ArTypedPerInstanceMemory,
StaticMemory, or Auto. To accept software mapping defaults, specify Auto.

If you map a signal or state to a variable type other than Auto, you can click the icon to view and
modify other code and calibration attributes for the variable.

Attribute Purpose
ShortName Specify a short name for the AUTOSAR variable.

For example, SM_equal_to_count. If
unspecified, ARXML export generates a short
name.

• For signals, the auto-generated short name
can differ from the signal name.

• For states, the auto-generated short name is
based on the state name if one exists. If the
state is unnamed, the generated name can
differ from the block name.

Volatile (StaticMemory only) Select or clear the option to indicate whether to
include C type qualifier volatile in generated
code for the AUTOSAR variable. For more
information, see “Specify C Type Qualifiers for
AUTOSAR Static and Constant Memory” on page
4-61.

AdditionalNativeTypeQualifier
(StaticMemory only)

Specify an AUTOSAR additional native type
qualifier to include in generated code for the
AUTOSAR variable. For example,
my_qualifier. For more information, see
“Specify C Type Qualifiers for AUTOSAR Static
and Constant Memory” on page 4-61.

 Map AUTOSAR Elements for Code Generation

4-59

Attribute Purpose
SwAddrMethod Select a SwAddrMethod name from the names

listed as valid for the AUTOSAR variable. For
example, the model autosar_swc_counter
defines VAR. Code generation uses the
SwAddrMethod name to group AUTOSAR
variables in a memory section for access by
calibration and measurement tools. For more
information, see “Configure SwAddrMethod” on
page 4-268.

SwCalibrationAccess Specify how calibration and measurement tools
can access the AUTOSAR variable. Valid access
values include ReadOnly, ReadWrite, and
NotAccessible. For more information, see
“Configure SwCalibrationAccess” on page 4-263.

DisplayFormat Specify a display format for the AUTOSAR
variable. For example, %5.1f. AUTOSAR display
format specifications control the width and
precision display for calibration and
measurement data. For more information, see
“Configure DisplayFormat” on page 4-265.

LongName Specify a description for the AUTOSAR variable.

To remove Simulink block signals from AUTOSAR component signal mapping, use a Code Mappings
editor button or a model cue:

• In the model canvas or on the Signals/States tab, select one or more signals. On the Signals/
States tab, click the Remove button .

• In the model canvas, select a signal. Place your cursor over the displayed ellipsis and select model
cue Remove selected signals from code mappings.

Alternatively, call MATLAB function removeSignal.

Map Data Transfers to AUTOSAR Inter-Runnable Variables
The Data Transfers tab of the Code Mappings editor supports modeling AUTOSAR inter-runnable
variables (IRVs) in Simulink. After using the AUTOSAR Dictionary to create AUTOSAR IRVs, which
connect runnables and implement aspects of internal behavior in an AUTOSAR component, open the
Code Mappings editor. Use the Data Transfers tab to map Simulink data transfer lines to AUTOSAR
IRVs.

For more information, see “Model AUTOSAR Component Behavior” on page 2-32. For illustrations of
how IRVs are used with rate-based and function-call-based runnables, see the example models in
“Model AUTOSAR Software Components” on page 2-3.

The Data Transfers tab of the Code Mappings editor maps each Simulink data transfer line to an
AUTOSAR IRV. Click the Update button to load or update Simulink data transfers in your model.

4 AUTOSAR Component Development

4-60

In the Data Transfers tab, you can map a Simulink data transfer line by selecting the signal name
and then selecting menu values for an IRV access mode (Implicit or Explicit) and an AUTOSAR
IRV name, among those listed for the AUTOSAR component.

For example, here is the Data Transfers tab for example model autosar_swc_slfcns.

Map Function Callers to AUTOSAR Client-Server Ports and Operations
The Function Callers tab of the Code Mappings editor supports modeling the client side of
AUTOSAR client-server (C-S) communication in Simulink. After using the AUTOSAR Dictionary to
create AUTOSAR client ports, C-S interfaces, and C-S operations in your model, open the Code
Mappings editor. Use the Function Callers tab to map Simulink function callers to AUTOSAR client
ports and AUTOSAR C-S operations.

For more information, see “Configure AUTOSAR Client-Server Communication” on page 4-142.

The Function Callers tab of the Code Mappings editor maps each Simulink function caller to an
AUTOSAR client port and an AUTOSAR C-S interface operation. Click the Update button to load
or update Simulink function callers in the model.

In the Function Callers tab, you can map a Simulink function caller by selecting the function caller
name and then selecting menu values for an AUTOSAR client port and an AUTOSAR operation,
among those listed for the AUTOSAR component.

Specify C Type Qualifiers for AUTOSAR Static and Constant Memory
For an AUTOSAR component, you can configure C type qualifiers to customize generated AUTOSAR-
compliant C code for AUTOSAR static memory and AUTOSAR constant memory. For example, you can
apply C type qualifiers such as const or volatile to control compiler optimizations.

In an AUTOSAR model, use the Code Mappings editor to configure C type qualifiers for model signals,
states, data stores, and parameters that are mapped to AUTOSAR StaticMemory or AUTOSAR
ConstantMemory. Building the model exports type qualifiers to ARXML files and generates AUTOSAR-
compliant C code that uses the type qualifiers.

For example, in the Code Mappings editor, Signals/States tab, suppose that you map a signal to

StaticMemory. Select the signal and click the icon to display additional code attributes.

 Map AUTOSAR Elements for Code Generation

4-61

If you select the Volatile attribute and specify AdditionalNativeTypeQualifier to be
my_qualifier:

• Exported ARXML files define the AdditionalNativeTypeQualifier:
<ADDITIONAL-NATIVE-TYPE-QUALIFIER>volatile my_qualifier</ADDITIONAL-NATIVE-TYPE-QUALIFIER>

• Generated C code uses the C type qualifiers, for example:
/* Static Memory for Internal Data */
volatile my_qualifier boolean SM_equal_to_count;

For more information, see “Map Block Signals and States to AUTOSAR Variables” on page 4-58, “Map
Data Stores to AUTOSAR Variables” on page 4-56, and “Map Model Workspace Parameters to
AUTOSAR Component Parameters” on page 4-54.

Specify Default Data Packaging for AUTOSAR Internal Variables
AUTOSAR Blockset provides functions to control the default data packaging used for internal
variables in the generated code for an AUTOSAR component model.

For models configured with a single instance of an AUTOSAR software component, you can specify
that internal data store, signal, and state data are packaged:

• With or without packing it in a structure
• With private or public visibility

For AUTOSAR software components that are instantiated multiple times and configured to generate
reentrant, reusable code, you can specify to package internal variables as determined by Simulink or
to use C-typed per-instance memory.

The functions getInternalDataPackaging and setInternalDataPackaging return and set the
default data packaging setting used for internal data stores, signals, and states in the generated code
for an AUTOSAR component model.

Valid setting values are:

• For single-instance models:

4 AUTOSAR Component Development

4-62

• Default — Accept the default internal data packaging provided by the software. Use Default
for submodels referenced from AUTOSAR component models.

• PrivateGlobal — Package internal variable data without a struct and make it private
(visible only to model.c).

• PrivateStructure — Package internal variable data in a struct and make it private (visible
only to model.c).

• PublicGlobal — Package internal variable data without a struct and make it public
(extern declaration in model.h).

• PublicStructure — Package internal variable data in a struct and make it public (extern
declaration in model.h).

• For multi-instance models:

• Default — Accept the default internal data packaging provided by the software. Use Default
for submodels referenced from AUTOSAR component models and multi-instance function-call
based models.

• CTypedPerInstanceMemory — Package internal variable data for each instance of an
AUTOSAR software component to use C-typed per-instance memory in a struct and make it
public (declaration in model.h). Setting CTypedPerInstanceMemory is supported for multi-
instance rate-based models.

This example modifies the default data packaging setting used for internal variables in the generated
code for an AUTOSAR component model. First, it returns the current internal data packaging setting
for the model. Then it sets the internal data packaging such that the code generator packages the
internal variable data in a struct and makes it private.
hModel = 'autosar_swc';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
slMap = autosar.api.getSimulinkMapping(hModel);
pkgSetting1 = getInternalDataPackaging(slMap)
setInternalDataPackaging(slMap,'PrivateStructure')
pkgSetting2 = getInternalDataPackaging(slMap)

pkgSetting1 =
 'Default'

pkgSetting2 =
 'PrivateStructure'

If the data packaging is set to PrivateGlobal or PrivateStructure, building the model
generates header file model_private.h, even when model configuration parameter File packaging
format is set to Compact.

If the model configuration option Generate separate internal data per entry-point function is set
for the AUTOSAR model, task-based internal data grouping overrides the AUTOSAR internal data
packaging setting. However, the AUTOSAR setting determines the public or private visibility of the
generated internal data groups.

For more information, see the getInternalDataPackaging and setInternalDataPackaging
reference pages.

 Map AUTOSAR Elements for Code Generation

4-63

See Also

Related Examples
• “Map Calibration Data for Submodels Referenced from AUTOSAR Component Models” on page

4-65
• “Configure AUTOSAR Elements and Properties” on page 4-8
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294

More About
• “AUTOSAR Component Configuration” on page 4-3
• “Code Generation”
• “Multi-Instance Components” on page 2-9

4 AUTOSAR Component Development

4-64

Map Calibration Data for Submodels Referenced from
AUTOSAR Component Models

In a Simulink implementation of an AUTOSAR design, model references allow you to organize and
manage large or numerous AUTOSAR components hierarchically. You can define an algorithm in a
submodel and reference it repeatedly. Referenced models compile independently from the models
that use them, which allows modular development, reuse and sharing of algorithms across multiple
components and designs, and incremental code generation.

For any model in an AUTOSAR model reference hierarchy, you can configure the model data for run-
time calibration. In submodels referenced from AUTOSAR software component models, you can use
the Code Mappings editor or equivalent functions to map parameters, data stores, signals, and states.
Submodel mapped internal data can be used in memory sections, and is available for software-in-the-
loop (SIL) and processor-in-the-loop (PIL) testing from the top model or calibration in the AUTOSAR
run-time environment.

In this section...
“Submodel Data Mapping Workflow” on page 4-65
“Map Submodel Parameters to AUTOSAR Component Parameters” on page 4-68
“Map Submodel Data Stores to AUTOSAR Variables” on page 4-69
“Map Submodel Signals and States to AUTOSAR Variables” on page 4-70
“Generate Submodel Data Macros for Verification and Deployment” on page 4-73

Submodel Data Mapping Workflow
To map Simulink submodel elements to AUTOSAR software component elements:

• Configure the submodel as a model referenced from an AUTOSAR software component model. Use
the AUTOSAR Component Quick Start or the AUTOSAR function autosar.api.create.

• In the AUTOSAR Code perspective, use the Code Mappings editor to configure the submodel
internal data.

• To generate C code and AUTOSAR XML (ARXML) files that support run-time calibration of the
submodel internal data, open and build the component model that references the submodel.

For this example, select a model that is referenced from an AUTOSAR software component model.
This example uses autosar_subcomponent, which is referenced twice in the AUTOSAR component
model autosar_component. These models are associated with the example script “Configure
Subcomponent Data for AUTOSAR Calibration and Measurement” on page 4-256. You can copy the
models from matlabroot/examples/autosarblockset/main (cd to folder) to a working folder.

 Map Calibration Data for Submodels Referenced from AUTOSAR Component Models

4-65

Open the submodel standalone, that is, in a separate model window. In the model window, from the
Apps tab, open the AUTOSAR Component Designer app. If the submodel is mapped, it opens in the
AUTOSAR Code perspective.

If the submodel is unmapped, the AUTOSAR Component Quick Start opens. Work through the quick-
start procedure. In the Set Component pane, select Model referenced from AUTOSAR software
component model

When you complete the quick-start procedure and click Finish, the submodel opens in the AUTOSAR
Code perspective.

In the AUTOSAR Code perspective, use the Code Mappings editor to:

• Map individual parameters to PerInstanceParameters.
• If block signals that must be mapped to AUTOSAR variables are not displayed in the Code

Mappings editor, select the signals and add them to the mapping table.

4 AUTOSAR Component Development

4-66

• Map individual signals, states, and data stores to ArTypedPerInstanceMemorys.
•

After setting the Mapped To property for a parameter, signal, state, or data store, click the
icon to view and modify other AUTOSAR code and calibration attributes.

If you have Simulink Coder and Embedded Coder software, you can build the component model that
references the submodel. When you build, the exported ARXML files and generated C code support
run-time calibration of the submodel internal data. The ARXML files exported for the top model
include descriptions of the submodel parameters, signals, states, and data stores, as well as software
address methods used in the submodel. The generated C code references the submodel internal data.
The model build also generates macros that provide access to the submodel data for SIL and PIL
testing and calibration in the AUTOSAR run-time environment. For more information, see “Generate
Submodel Data Macros for Verification and Deployment” on page 4-73.

To programmatically configure a submodel as a model referenced from an AUTOSAR software
component model, call the AUTOSAR function autosar.api.create and specify the name-value
pair argument 'ReferencedFromComponentModel',true. For example:

 Map Calibration Data for Submodels Referenced from AUTOSAR Component Models

4-67

hModel = 'autosar_subcomponent';
open_system(hModel);
autosar.api.create(hModel,'default','ReferencedFromComponentModel',true);

To programmatically add shared definitions of software address methods to use with the submodel,
call the AUTOSAR importer function updateModel and specify the name of an AUTOSAR XML
(ARXML) file containing the shared definitions. For example:
ar = arxml.importer('SwAddrMethods.arxml');
updateModel(ar,hModel);

Map Submodel Parameters to AUTOSAR Component Parameters
On the Parameters tab of the Code Mappings editor, you can map Simulink submodel parameters to
AUTOSAR per-instance parameters for AUTOSAR run-time calibration. Examples of model workspace
parameters you can map include:

• Simulink parameter objects
• Simulink lookup table objects
• Simulink breakpoint objects

By mapping lookup table and breakpoint objects to AUTOSAR internal calibration parameters, you
can model AUTOSAR parameters for integrated and distributed lookups. For more information, see
“Configure Lookup Tables for AUTOSAR Calibration and Measurement” on page 4-274.

After creating model workspace parameters in your model, for example, using Model Explorer, open
the Code Mappings editor and select the Parameters tab. Select Simulink model workspace
parameters and map them to AUTOSAR component per-instance parameters.

For more information, see “Configure Model Workspace Parameters as AUTOSAR Per-Instance
Parameters” on page 4-213.

The Parameters tab lists each Simulink model workspace parameter that you can map to an
AUTOSAR parameter. You can:

• Map a parameter by selecting it and then selecting a menu value for an AUTOSAR parameter
type: PerInstanceParameter or Auto. To accept software mapping defaults, specify Auto.

For example, here is the Parameters tab for submodel autosar_subcomponent. AUTOSAR
software component model autosar_component contains two instances of
autosar_subcomponent.

•
If you select parameter type PerInstanceParameter, click the icon to view and modify
other AUTOSAR code and calibration attributes for the parameter.

4 AUTOSAR Component Development

4-68

Attribute Purpose
SwAddrMethod Select a SwAddrMethod name from the names

listed as valid for the AUTOSAR parameter.
For example, the submodel
autosar_subcomponent defines CALIB_32.
Code generation uses the SwAddrMethod
name to group AUTOSAR parameters in a
memory section for access by calibration and
measurement tools. For more information, see
“Configure SwAddrMethod” on page 4-268.

SwCalibrationAccess Specify how calibration and measurement
tools can access the AUTOSAR parameter.
Valid access values include ReadOnly,
ReadWrite, and NotAccessible. For more
information, see “Configure
SwCalibrationAccess” on page 4-263.

DisplayFormat Specify a display format for the AUTOSAR
parameter. For example, %5.1f. AUTOSAR
display format specifications control the width
and precision display for calibration and
measurement data. For more information, see
“Configure DisplayFormat” on page 4-265.

LongName Specify a description for the AUTOSAR
parameter.

Map Submodel Data Stores to AUTOSAR Variables
On the Data Stores tab of the Code Mappings editor, you can map Simulink submodel data store
memory blocks to AUTOSAR-typed per-instance memory elements for AUTOSAR run-time calibration.

After creating data store memory blocks in your model, open the Code Mappings editor and select the
Data Stores tab. Select data stores and map them to AUTOSAR-typed per-instance memory
elements. For more information, see “Configure AUTOSAR Per-Instance Memory” on page 4-201.

The Data Stores tab lists each Simulink data store that you can map to an AUTOSAR variable. You
can:

• Map a data store by selecting the data store, and then selecting a menu value for an AUTOSAR
variable type: ArTypedPerInstanceMemory or Auto. To accept software mapping defaults,
specify Auto.

For example, here is the Local Data Stores tab for submodel autosar_subcomponent.
AUTOSAR software component model autosar_component contains two instances of
autosar_subcomponent.

 Map Calibration Data for Submodels Referenced from AUTOSAR Component Models

4-69

•
If you select variable type ArTypedPerInstanceMemory, click the icon to view and modify
other AUTOSAR code and calibration attributes for the variable.

Attribute Purpose
ShortName Specify a short name for the AUTOSAR

variable. For example, dsmsig. If unspecified,
ARXML export generates a short name.

NeedsNVRAMAccess Select or clear the option to indicate whether
the AUTOSAR variable needs access to
nonvolatile RAM on a processor. To configure
the per-instance memory to be a mirror block
for a specific NVRAM block, select the option.

SwAddrMethod Select a SwAddrMethod name from the names
listed as valid for the AUTOSAR variable. For
example, the submodel
autosar_subcomponent defines
VAR_INIT_32. Code generation uses the
SwAddrMethod name to group AUTOSAR
variables in a memory section for access by
calibration and measurement tools. For more
information, see “Configure SwAddrMethod”
on page 4-268.

RestoreAtStart Select or clear the option to indicate if the
state should be read out at startup.

StoreAtShutdown Select or clear the option to indicate if the
state written away at shutdown.

SwCalibrationAccess Specify how calibration and measurement
tools can access the AUTOSAR variable. Valid
access values include ReadOnly, ReadWrite,
and NotAccessible. For more information,
see “Configure SwCalibrationAccess” on page
4-263.

DisplayFormat Specify a display format for the AUTOSAR
variable. For example, %5d. AUTOSAR display
format specifications control the width and
precision display for calibration and
measurement data. For more information, see
“Configure DisplayFormat” on page 4-265.

LongName Specify a description for the AUTOSAR
variable.

Map Submodel Signals and States to AUTOSAR Variables
On the Signals/States tab of the Code Mappings editor, you can map Simulink submodel block
signals and states to AUTOSAR-typed per-instance memory elements for AUTOSAR run-time
calibration.

4 AUTOSAR Component Development

4-70

In the Code Mappings editor, Simulink block states that correspond to state owner blocks are
available for mapping.

To make Simulink block signals available for mapping, use a Code Mappings editor button or a model
cue:

• In the model canvas, select one or more signals. Open the Code Mappings editor, Signals/States

tab, and click the Add button .
• In the model canvas, select a signal. Place your cursor over the displayed ellipsis and select model

cue Add selected signals to code mappings.

Alternatively, call MATLAB function addSignal.

After selectively adding block signals to AUTOSAR signal mapping, open the Code Mappings editor
and select the Signals/States tab. Select block signals and states and map them to AUTOSAR-typed
per-instance memory elements. For more information, see “Configure AUTOSAR Per-Instance
Memory” on page 4-201.

The Signals/States tab lists each Simulink block signal and state that you can map to an AUTOSAR
variable. You can:

• Map a Simulink signal or state by selecting the signal or state, and then selecting a menu value
for an AUTOSAR variable type: ArTypedPerInstanceMemory or Auto. To accept software
mapping defaults, specify Auto.

For example, here is the Signals/States tab for submodel autosar_subcomponent. AUTOSAR
software component model autosar_component contains two instances of
autosar_subcomponent.

•
If you select variable type ArTypedPerInstanceMemory, click the icon to view and modify
other AUTOSAR code and calibration attributes for the variable.

 Map Calibration Data for Submodels Referenced from AUTOSAR Component Models

4-71

Attribute Purpose
ShortName Specify a short name for the AUTOSAR

variable. For example, lutsig. If unspecified,
ARXML export generates a short name.

• For signals, the auto-generated short name
can differ from the signal name.

• For states, the auto-generated short name
is based on the state name if one exists. If
the state is unnamed, the generated name
can differ from the block name.

SwAddrMethod Select a SwAddrMethod name from the names
listed as valid for the AUTOSAR variable. For
example, the submodel
autosar_subcomponent defines
VAR_INIT_32. Code generation uses the
SwAddrMethod name to group AUTOSAR
variables in a memory section for access by
calibration and measurement tools. For more
information, see “Configure SwAddrMethod”
on page 4-268.

SwCalibrationAccess Specify how calibration and measurement
tools can access the AUTOSAR variable. Valid
access values include ReadOnly, ReadWrite,
and NotAccessible. For more information,
see “Configure SwCalibrationAccess” on page
4-263.

DisplayFormat Specify a display format for the AUTOSAR
variable. For example, %1d. AUTOSAR display
format specifications control the width and
precision display for calibration and
measurement data. For more information, see
“Configure DisplayFormat” on page 4-265.

LongName Specify a description for the AUTOSAR
variable.

To remove Simulink block signals from AUTOSAR signal mapping, use a Code Mappings editor button
or a model cue:

• In the model canvas or on the Signals/States tab, select one or more signals. On the Signals/
States tab, click the Remove button .

• In the model canvas, select a signal. Place your cursor over the displayed ellipsis and select model
cue Remove selected signals from code mappings.

Alternatively, call MATLAB function removeSignal.

4 AUTOSAR Component Development

4-72

Generate Submodel Data Macros for Verification and Deployment
When you build an AUTOSAR software component model that references a submodel, the exported
ARXML files and generated C code support run-time calibration of the submodel internal data.

• The ARXML files exported for the top model include descriptions of the submodel parameters,
signals, states, and data stores, as well as software address methods used in the submodel.

• The generated C code references the submodel internal data.

The model build also generates macros that provide access to the submodel mapped internal data for
SIL and PIL testing from the referencing component model, and calibration in the AUTOSAR run-time
environment. If an AUTOSAR component model build encompasses a referenced model with mapped
internal data, the generated submodel header file references these macros:

• INCLUDE_RTE_HEADER — Flag indicating whether to include an RTE component header.
• RTE_COMPONENT_HEADER — Name of a header file containing definitions for submodel internal

parameters, signals, states, and data stores.

For example, if you build AUTOSAR software component model autosar_component, which
contains two instances of autosar_subcomponent, the generated file autosar_subcomponent.h
contains this code.

#ifdef INCLUDE_RTE_HEADER
#include RTE_COMPONENT_HEADER
#endif

If you run top-model SIL or PIL testing from an AUTOSAR software component model that references
a mapped submodel, the SIL or PIL model build automatically picks up the submodel internal data
definitions.

When you integrate the generated code into an AUTOSAR run-time environment, you must configure
the INCLUDE_RTE_HEADER and RTE_COMPONENT_HEADER macros to include the submodel
internal data definitions.

See Also
autosar.api.create | Code Mappings Editor

Related Examples
• “Configure Subcomponent Data for AUTOSAR Calibration and Measurement” on page 4-256
• “Configure Model Workspace Parameters as AUTOSAR Per-Instance Parameters” on page 4-213
• “Configure AUTOSAR Per-Instance Memory” on page 4-201
• “Map AUTOSAR Elements for Code Generation” on page 4-50
• “Integrate Generated Code for Multi-Instance Software Components” on page 5-32

More About
• “AUTOSAR Component Configuration” on page 4-3

 Map Calibration Data for Submodels Referenced from AUTOSAR Component Models

4-73

Incrementally Update AUTOSAR Mapping After Model Changes
While developing an AUTOSAR software component model, you can use function
autosar.api.create to incrementally configure and map Simulink elements as you add them to
your model. When used with a mapped AUTOSAR model, autosar.api.create does not recreate
or replace the current Simulink to AUTOSAR mapping. Instead, the function updates the mapping to
reflect your model changes. The function:

• Preserves current model configuration and mapping.
• Finds and maps unmapped model elements.
• Updates the AUTOSAR Dictionary for deleted model elements.

In this example, you add inports and outports to a mapped AUTOSAR software component model.
Then you use autosar.api.create to create and map corresponding AUTOSAR elements with
default naming and properties. After the incremental update, you can edit the default naming and
properties as you require.

1 Open a mapped AUTOSAR software component model. For this example, create a model named
Controller from an ARXML file. The ARXML file is located at matlabroot/examples/
autosarblockset/data, which is on the default MATLAB search path. Use these commands.
ar = arxml.importer('ThrottlePositionControlComposition.arxml');
createComponentAsModel(ar,'/Company/Components/Controller',...
 'ModelPeriodicRunnablesAs','AtomicSubsystem');

In the Code Mappings editor, Inports and Outports tabs, here is the initial Simulink to
AUTOSAR mapping of Simulink inports and outports in the model.

4 AUTOSAR Component Development

4-74

2 Add an inport and an outport to subsystem block Runnable_Step_sts, and a corresponding
inport and outport inside the subsystem. For example, inside the subsystem, add inport
Ctrl_Override_read and outport ThrCommand_Override_write. At the top level, add inport
Ctrl_Override and outport ThrCommand_Override. Connect the inports and outports.

3 To configure and map the added inports and outports, call the autosar.api.create function.
Use either of these forms.
autosar.api.create('Controller','incremental');
autosar.api.create('Controller');

For more information about function syntax and behavior, see autosar.api.create.
4 In the Code Mappings editor, Inports and Outports tabs,here is the updated Simulink to

AUTOSAR mapping of Simulink inports and outports in the model. Notice that the added inport
and outport are each mapped to an AUTOSAR port and data element, which the function created
in the AUTOSAR Dictionary. The function also created the S-R interfaces that own each data
element.

5 The function provided default naming and properties for the AUTOSAR ports, S-R interfaces, and
data elements created in the AUTOSAR Dictionary. You can edit the naming and properties to
correspond with peer elements or match your design requirements. For example, you can rename
the created data elements to Value to match the other S-R interface data elements in the model.

 Incrementally Update AUTOSAR Mapping After Model Changes

4-75

See Also
autosar.api.create

More About
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-76

Design and Simulate AUTOSAR Components and Generate
Code

Develop AUTOSAR components by implementing behavior algorithms, simulating components and
compositions, and generating component code.

Begin with Simulink Representation of AUTOSAR Components

To develop AUTOSAR components in Simulink®, you first create a Simulink representation of an
AUTOSAR software component. AUTOSAR component creation can start from an ARXML component
description or an existing Simulink design.

• To import an AUTOSAR software component description from ARXML files and create an initial
Simulink model representation, see example “Import AUTOSAR Component to Simulink” on page
3-19 or example “Import AUTOSAR Composition to Simulink” on page 7-2.

• To create an initial model representation of an AUTOSAR software component in Simulink, see
“Create AUTOSAR Software Component in Simulink” on page 3-2.

This example uses a Simulink representation of an AUTOSAR software composition named
autosar_composition, which models a throttle position control system. The composition contains
six interconnected AUTOSAR software components -- four sensor/actuator components and two
application components.

Open the composition model autosar_composition.

open_system('autosar_composition');

Signal lines between component models represent AUTOSAR assembly connectors. Signal lines
between component models and data inports and outports represent AUTOSAR delegation
connectors.

In a composition model, component models can be rate-based, function-call based, or a mix of both.
This composition contains rate-based component models. In each component model, atomic
subsystems model AUTOSAR periodic runnables. To allow rate-based runnable tasks to be scheduled
on the same basis as exported functions, the component models use the Model block option
Schedule rates. This option displays model periodic event ports for rate-based models.

 Design and Simulate AUTOSAR Components and Generate Code

4-77

Functional Overview of Throttle Position Control Composition

The objective of the composition model autosar_composition is to control an automotive throttle
based on input from an accelerator pedal and feedback from the throttle. Inside the composition, a
controller component takes input values from an accelerator pedal position (APP) sensor and two
throttle position sensors (TPSs). The controller then translates the values into input values for a
throttle actuator. The throttle actuator generates a hardware command that adjusts the throttle
position.

The composition model has root inports for an accelerator pedal sensor and two throttle sensors, and
a root outport for a command to throttle hardware. The composition requires sensor input values to
arrive already normalized to analog/digital converter (ADC) range. The composition components are
three sensors, one monitor, one controller, and one actuator.

• Sensor component model autosar_swc_pedal_sensor takes an APP sensor HWIO value from a
composition inport and converts it to an APP sensor percent value.

• Primary and secondary instances of sensor component model autosar_swc_throttle_sensor
take TPS HWIO values from composition inports and convert them to TPS percent values.

• Application component model autosar_swc_monitor decides which TPS signal to pass through
to the controller.

• Application component model autosar_swc_controller takes the APP sensor percent value
from the pedal sensor and the TPS percent value provided by the TPS monitor. Based on these

4 AUTOSAR Component Development

4-78

values, the controller calculates a throttle command percent value to provide to the throttle
actuator.

• Actuator component model autosar_swc_actuator takes the throttle command percent value
provided by the controller and converts it to a throttle command HWIO value.

Develop AUTOSAR Component Algorithms

After creating initial Simulink representations of one or more AUTOSAR software components, you
develop the components by refining the AUTOSAR configuration and creating algorithmic model
content.

To develop AUTOSAR component algorithms, open each component and provide Simulink content
that implements the component behavior. For example, consider the autosar_swc_controller
component model in the autosar_composition model. When first imported or created in Simulink,
the initial representation of the autosar_swc_controller component likely contained an initial
stub implementation of the controller behavior.

Component model autosar_swc_controller provides this implementation of the throttle position
controller behavior. The component takes as inputs an APP sensor percent value from a pedal position
sensor and a TPS percent value provided by a throttle position sensor monitor. Based on these values,
the controller calculates the error, which is the difference between where the automobile driver
wants the throttle, based on the pedal sensor, and the current throttle position. A Discrete PID
Controller block uses the error value to calculate a throttle command percent value to provide to a
throttle actuator. A scope displays the error value and the Discrete PID Controller block output value
over time.

The sensor and actuator component models in the autosar_composition model use lookup tables
to implement their value conversions. For example, consider the autosar_swc_actuator
component model. When first imported or created in Simulink, the initial representation of the
autosar_swc_actuator component likely contained an initial stub implementation of the actuator
behavior.

 Design and Simulate AUTOSAR Components and Generate Code

4-79

Component model autosar_swc_actuator provides this implementation of the throttle position
actuator behavior. The component takes the throttle command percent value provided by the
controller and converts it to a throttle command HWIO value. A hardware bridge command lookup
table generates the output value.

The monitor component model in the autosar_composition model implements logic for selecting
which TPS signal to provide to the controller component. When first imported or created in Simulink,
the initial representation of the autosar_swc_monitor component likely contained an initial stub
implementation of the monitor behavior.

Component model autosar_swc_monitor provides this implementation of the throttle position
monitor behavior. The component takes TPS percent values from primary and secondary throttle
position sensors and decides which TPS signal to pass through to the controller. A Switch block
determines which value is passed through, based on sensor selection logic.

Simulate AUTOSAR Components and Composition

As you develop AUTOSAR components, you can simulate component models individually or as a group
in a containing composition.

Simulate the implemented Controller component model.

open_system('autosar_swc_controller');
simOutComponent = sim('autosar_swc_controller');
close_system('autosar_swc_controller');

Simulate the autosar_composition model.

simOutComposition = sim('autosar_composition');

4 AUTOSAR Component Development

4-80

Generate AUTOSAR Component Code (Embedded Coder)

As you develop each AUTOSAR component, if you have Simulink Coder and Embedded Coder
software, you can generate ARXML component description files and algorithmic C code for testing in
Simulink or integration into an AUTOSAR run-time environment.

For example, to build the implemented autosar_swc_controller component model, open the
model. Press Ctrl+B or enter the MATLAB command slbuild('autosar_swc_controller').

The model build exports ARXML descriptions, generates AUTOSAR-compliant C code, and opens an
HTML code generation report describing the generated files. In the report, you can examine the
generated files and click hyperlinks to navigate between generated code and source blocks in the
component model.

Alternatives for AUTOSAR System-Level Simulation

After you develop AUTOSAR components and compositions, you can test groups of components that
belong together in a system-level simulation. You can:

• Combine components in a composition for simulation.
• Create a test harness with components, a scheduler, a plant model, and potentially Basic Software

service components and callers. Use the test harness to perform an open-loop or closed-loop
system simulation.

For an example of open-loop simulation that uses Simulink Test, see “Testing AUTOSAR
Compositions” (Simulink Test). The example performs back-to-back testing for an AUTOSAR
composition model.

For an example of a closed-loop simulation, open example model autosar_system. This model
provides a system-level test harness for the AUTOSAR composition model autosar_composition.

open_system('autosar_system');

 Design and Simulate AUTOSAR Components and Generate Code

4-81

The objective of the system-level model autosar_system is performing system-level simulation of
the plant and controller portions of the automotive throttle position control system. The system-level
model combines the composition model autosar_composition with block representations of the
physical accelerator pedal and throttle devices in a closed-loop system. The model takes output
values from the pedal and throttle device blocks, converts the values to analog/digital converter
(ADC) range, and provides the values as inputs to the composition. The system model also takes the
throttle command HWIO value generated by the composition and converts it to an acceptable input
value for the throttle device block. A system-level throttle position scope displays the accelerator
pedal sensor input value against the throttle position sensor input value over time.

If you simulate the system-level model, the throttle position scope indicates how well the throttle-
position control algorithms in the throttle composition model are tracking the accelerator pedal input.
You can modify the system to improve the composition behavior. For example, you can modify
component algorithms to bring the accelerator pedal and throttle position values closer in alignment
or you can change a sensor source.

simOutSystem = sim('autosar_system');

Related Links

• “Import AUTOSAR Component to Simulink” on page 3-19
• “Import AUTOSAR Composition to Simulink” on page 7-2

4 AUTOSAR Component Development

4-82

• “Create AUTOSAR Software Component in Simulink” on page 3-2
• “Component Development”
• “Testing AUTOSAR Compositions” (Simulink Test)

 Design and Simulate AUTOSAR Components and Generate Code

4-83

Configure AUTOSAR Packages
In Simulink, you can modify the hierarchical AUTOSAR package structure, as defined by the
AUTOSAR standard, that Embedded Coder exports to ARXML code.

In this section...
“AR-PACKAGE Structure” on page 4-84
“Configure AUTOSAR Packages and Paths” on page 4-86
“Control AUTOSAR Elements Affected by Package Path Modifications” on page 4-88
“Export AUTOSAR Packages” on page 4-89
“AR-PACKAGE Location in Exported ARXML Files” on page 4-90

AR-PACKAGE Structure
The AUTOSAR standard defines AUTOSAR packages (AR-PACKAGEs). AR-PACKAGEs contain groups
of AUTOSAR elements and reside in a hierarchical AR-PACKAGE structure. In an AUTOSAR authoring
tool (AAT) or in Simulink, you can configure an AR-PACKAGE structure to:

• Conform to an organizational or standardized AR-PACKAGE structure.
• Establish a namespace for elements in a package.
• Provide a basis for relative references to elements.

The ARXML importer imports AR-PACKAGEs, their elements, and their paths into Simulink. The
model configuration preserves the packages for subsequent export to ARXML code. In general, the
software preserves AUTOSAR packages across round-trips between an AAT and Simulink.

If your AUTOSAR component originated in Simulink, at component creation, the AUTOSAR
component builder creates an initial default AR-PACKAGE structure, containing the following
packages.

• Software components
• Data types
• Port interfaces
• Implementation

For example, suppose that you start with a simple Simulink model, such as rtwdemo_counter.
Rename it to mySWC. Configure the model for AUTOSAR code generation. (For example, open the
Embedded Coder Quick Start and select AUTOSAR code generation.) When you build the model, its
initial AR-PACKAGE structure resembles the following figure.

4 AUTOSAR Component Development

4-84

After component creation, you can use the XML Options view in the AUTOSAR Dictionary to specify
additional AR-PACKAGEs. (See “Configure AUTOSAR XML Options” on page 4-43 or “Configure
AUTOSAR Adaptive XML Options” on page 6-33.) Each AR-PACKAGE represents an AUTOSAR
element category. During code generation, the ARXML exporter generates a package if any elements
of its category exist in the model. For each package, you specify a path, which defines its location in
the AR-PACKAGE structure.

Using XML options, you can configure AUTOSAR packages for the following categories of AUTOSAR
elements:

• Application data types
• Software base types
• Data type mapping sets
• Constants and values
• Physical data constraints (referenced by application data types or data prototypes)
• System constants
• Software address methods
• Mode declaration groups
• Computation methods
• Units and unit groups
• Software record layouts (for application data types of category CURVE, MAP, CUBOID, or

COM_AXIS)
• Internal data constraints (referenced by implementation data types)

Note

• For packages that you define in XML options, the ARXML exporter generates a package only if the
model contains an element of the package category. For example, the exporter generates a
software address method package only if the model contains a software address method element.

• You can specify separate packages for the listed elements, for example, application data types.
Implementation data types are aggregated in the main data types package.

The AR-PACKAGE structure is logically distinct from the single-file or modular-file partitioning that
you can select for ARXML export, using the XML option Exported XML file packaging. For more

 Configure AUTOSAR Packages

4-85

information about AUTOSAR package export, see “AR-PACKAGE Location in Exported ARXML Files”
on page 4-90.

Configure AUTOSAR Packages and Paths
If you import an AR-PACKAGE structure into Simulink, the ARXML importer preserves package-
element relationships and package paths defined in the ARXML code. Also, the importer populates
packaging properties in the component and XML Options views in the AUTOSAR Dictionary. If the
ARXML code does not assign AUTOSAR elements to packages based on category, the importer uses
heuristics to determine an optimal category association for a package. However, a maximum of one
package can be associated with a category.

Suppose that you start with a non-AUTOSAR Simulink model and configure the model for AUTOSAR
code generation. (For example, open the Embedded Coder Quick Start and select AUTOSAR code
generation.) The software creates an initial default AR-PACKAGE structure. After component creation,
the component view in the AUTOSAR Dictionary displays Component XML Options, including
package paths for the component, internal behavior, and implementation.

The XML Options view displays paths for AUTOSAR data type and interface packages, and
additional packages.

4 AUTOSAR Component Development

4-86

Using the Additional Packages subpane, you can populate path fields for additional packages or
leave them empty. If you leave a package field empty, and if the model contains packageable elements
of that category, the ARXML exporter uses internal rules to calculate the package path. The
application of internal rules is backward-compatible with earlier releases. The following table lists the
XML option packaging properties with their rule-based default package paths.

Property Name Package Paths Based on Internal Rules
InternalBehaviorQualifiedName /Components/InternalBehaviors/modelname_IB
ImplementationQualifiedName /Components/SwcImplementations/modelname_Impl
ComponentQualifiedName /Components/modelname

(The dialog box displays the component path without the short
name.)

DataTypePackage /DataTypes
(Data type packaging is affected by the property settings for
AUTOSAR Platform Types. See “AUTOSAR Platform Types” on
page 4-46 for more information.)

InterfacePackage /Interfaces
ApplicationDataTypePackage DataTypePackage/ApplDataTypes
SwBaseTypePackage DataTypePackage/SwBaseTypes

(SW base type packaging is affected by the property settings for
AUTOSAR Platform Types. See “AUTOSAR Platform Types” on
page 4-46 for more information.)

DataTypeMappingPackage DataTypePackage/DataTypeMappings
ConstantSpecificationPackage DataTypePackage/Constants
DataConstraintPackage ApplicationDataTypePackage/DataConstrs
SystemConstantPackage DataTypePackage/SystemConstants
SwAddressMethodPackage DataTypePackage/SwAddrMethods
ModeDeclarationGroupPackage DataTypePackage/ModeDeclarationGroups
CompuMethodPackage DataTypePackage/CompuMethods

 Configure AUTOSAR Packages

4-87

Property Name Package Paths Based on Internal Rules
UnitPackage DataTypePackage/Units
SwRecordLayoutPackage DataTypePackage/SwRecordLayouts
InternalDataConstraintPackage DataTypePackage/DataConstrs

To set a packaging property in the MATLAB Command Window or in a script, use an AUTOSAR
property set function call similar to the following:
hModel = 'autosar_swc_counter';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
arProps=autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ApplicationDataTypePackage','/Company/Powertrain/DataTypes/ADTs');
get(arProps,'XmlOptions','ApplicationDataTypePackage')

For a sample script, see “Configure AUTOSAR XML Export” on page 4-316.

For an example of configuring and exporting AUTOSAR packages, see “Export AUTOSAR Packages”
on page 4-89.

Control AUTOSAR Elements Affected by Package Path Modifications
If you modify an AUTOSAR package path, and if packageable elements of that category are affected,
you can:

• Move the elements from the existing package to the new package.
• Set the new package path without moving the elements.

If you modify a package path in the AUTOSAR Dictionary, and if packageable elements of that
category are affected, a dialog box opens. For example, if you modify the XML option
ConstantSpecification Package from path value /pkg/dt/Ground to /pkg/misc/MyGround, the
software opens the following dialog box.

To move AUTOSAR constant specification elements to the new package, click OK. To set the new
package path without moving the elements, click Cancel.

If you programmatically modify a package path, you can use the MoveElements property to specify
handling of affected elements. The property can be set to All (the default), None, or Alert. If you
specify Alert, and if packageable elements are affected, the software opens the dialog box with OK
and Cancel buttons.

For example, the following code sets a new constant specification package path without moving
existing constant specification elements to the new package.
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));

4 AUTOSAR Component Development

4-88

open_system(hModel);
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ConstantSpecificationPackage','/pkg/misc/MyGround',...
 'MoveElements','None');

Export AUTOSAR Packages
This example shows how to configure and export AUTOSAR packages for an AUTOSAR software
component that originated in Simulink.

1 Open a model that you configured for the AUTOSAR system target file and that models an
AUTOSAR software component. This example uses the example model autosar_swc_expfcns.

2 Open the AUTOSAR Dictionary and select XML Options. Here are initial settings for some of the
AUTOSAR package parameters.

In this example, Exported XML file packaging is set to Single file, which generates a
single, unified ARXML file. If you prefer multiple, modular ARXML files, change the setting to
Modular.

3 Configure packages for one or more AUTOSAR elements that your model exports to ARXML
code. For each package, enter a path to define its location in the AR-PACKAGE structure. Click
Apply.

The example model exports multiple AUTOSAR constant specifications. This example changes the
ConstantSpecification Package parameter from /pkg/dt/Ground to /pkg/misc/MyGround.

 Configure AUTOSAR Packages

4-89

4 Generate code for the model.
5 Open the generated file modelname.arxml. (If you set Exported XML file packaging to

Modular, open the generated file modelname_datatype.arxml.)
6 Search the XML code for the packages that you configured, for example, using the text AR-

PACKAGE or an element name. For the example model, searching
autosar_swc_expfcns.arxml for the text MyGround finds the constant specification package
and many references to it. Here is a sample code excerpt.

AR-PACKAGE Location in Exported ARXML Files
Grouping AUTOSAR elements into AUTOSAR packages (AR-PACKAGEs) is logically distinct from the
ARXML output file packaging that the AUTOSAR configuration parameter Exported XML file
packaging controls. Whether you set Exported XML file packaging to Single file or Modular,
ARXML export preserves the configured AR-PACKAGE structure.

Suppose that you configure the example model autosar_swc_expfcns with the following AR-
PACKAGE structure. (See the steps in “Export AUTOSAR Packages” on page 4-89). In this
configuration, the path of the constant specification package has been changed from the initial model
setting, /pkg/dt/Ground, to /pkg/misc/myGround.

4 AUTOSAR Component Development

4-90

If you export this AR-PACKAGE structure into a single file (Exported XML file packaging is set to
Single file), the exported ARXML code preserves the configured AR-PACKAGE structure.
autosar_swc_expfcns.arxml:

<AR-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME>pkg</SHORT-NAME>
 ...
 <SHORT-NAME>swc</SHORT-NAME>
 ...
 <SHORT-NAME>if</SHORT-NAME>
 ...
 <SHORT-NAME>dt</SHORT-NAME>
 ...
 <SHORT-NAME>SwBaseTypes</SHORT-NAME>
 ...
 <SHORT-NAME>misc</SHORT-NAME>
 ...
 <SHORT-NAME>MyGround</SHORT-NAME>
 ...
 <SHORT-NAME>imp</SHORT-NAME>
 ...
 </AR-PACKAGE>
</AR-PACKAGES>

If you export the same AR-PACKAGE structure into multiple files (Exported XML file packaging is
set to Modular), the exported ARXML code preserves the configured AR-PACKAGE structure,
distributed across multiple files.

The exporter maps packageable AUTOSAR elements to ARXML files based on element category, not
package path. For example, the exporter maps the data-type-oriented ConstantSpecification
package, /pkg/misc/myGround, to the data types ARXML file,
autosar_swc_expfcns_datatype.arxml.
autosar_swc_expfcns_component.arxml:

<AR-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME>pkg</SHORT-NAME>
 ...
 <SHORT-NAME>swc</SHORT-NAME>
 ...
 </AR-PACKAGE>
</AR-PACKAGES>

autosar_swc_expfcns_datatype.arxml:

<AR-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME>pkg</SHORT-NAME>
 ...
 <SHORT-NAME>dt</SHORT-NAME>
 ...
 <SHORT-NAME>SwBaseTypes</SHORT-NAME>
 ...
 <SHORT-NAME>misc</SHORT-NAME>
 ...
 <SHORT-NAME>MyGround</SHORT-NAME>
 ...
 </AR-PACKAGE>
</AR-PACKAGES>

autosar_swc_expfcns_implementation.arxml:

<AR-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME>pkg</SHORT-NAME>
 ...

 Configure AUTOSAR Packages

4-91

 <SHORT-NAME>imp</SHORT-NAME>
 ...
 </AR-PACKAGE>
</AR-PACKAGES>

autosar_swc_expfcns_interface.arxml:

<AR-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME>pkg</SHORT-NAME>
 ...
 <SHORT-NAME>if</SHORT-NAME>
 ...
 </AR-PACKAGE>
</AR-PACKAGES>

See Also

Related Examples
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Import AUTOSAR Adaptive Software Descriptions” on page 6-12
• “Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod” on

page 4-93
• “Configure AUTOSAR XML Options” on page 4-43
• “Configure AUTOSAR Adaptive XML Options” on page 6-33
• “Configure AUTOSAR XML Export” on page 4-316
• “Configure AUTOSAR Code Generation” on page 5-7
• “Configure AUTOSAR Adaptive Code Generation” on page 6-73

More About
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-92

Configure AUTOSAR Package for Component, Interface,
CompuMethod, or SwAddrMethod

As part of configuring an AUTOSAR component, interface, CompuMethod, or SwAddrMethod, you
specify the AUTOSAR package (AR-PACKAGE) to be generated for individual components, interfaces,
CompuMethods, or SwAddrMethods in your configuration. For example, here is the AUTOSAR
Dictionary view for an individual interface.

You can enter a package path in the Package parameter field, or use the AUTOSAR Package Browser
to select a package. To open the browser, click the button to the right of the Package field. The
AUTOSAR Package Browser opens.

In the browser, you can select an existing package, or create and select a new package. To create a

new package, select the containing folder for the new package and click the Add button . For
example, to add a new interface package, select the if folder and click the Add button. Then select
the new subpackage and edit its name.

 Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod

4-93

When you apply your changes in the browser, the interface Package parameter value is updated with
your selection.

For more information about AR-PACKAGEs, see “Configure AUTOSAR Packages” on page 4-84.

See Also

Related Examples
• “Configure AUTOSAR Elements and Properties” on page 4-8
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294

More About
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-94

Configure AUTOSAR Sender-Receiver Communication
In AUTOSAR port-based sender-receiver (S-R) communication, AUTOSAR software components read
and write data to other components or services. To implement S-R communication, AUTOSAR
software components define:

• An AUTOSAR sender-receiver interface with data elements.
• AUTOSAR provide and require ports that send and receive data.

In Simulink, you can:

1 Create AUTOSAR S-R interfaces and ports by using the AUTOSAR Dictionary.
2 Model AUTOSAR provide and require ports by using Simulink root-level outports and inports.
3 Map the outports and inports to AUTOSAR provide and require ports by using the Code

Mappings editor.

For queued sender-receiver communication, see “Configure AUTOSAR Queued Sender-Receiver
Communication” on page 4-111.

In this section...
“Configure AUTOSAR Sender-Receiver Interface” on page 4-95
“Configure AUTOSAR Provide-Require Port” on page 4-96
“Configure AUTOSAR Receiver Port for IsUpdated Service” on page 4-98
“Configure AUTOSAR Sender-Receiver Data Invalidation” on page 4-99
“Configure AUTOSAR S-R Interface Port for End-To-End Protection” on page 4-102
“Configure AUTOSAR Receiver Port for DataReceiveErrorEvent” on page 4-105
“Configure AUTOSAR Sender-Receiver Port ComSpecs” on page 4-107

Configure AUTOSAR Sender-Receiver Interface
To create an S-R interface and ports in Simulink:

1
Open the AUTOSAR Dictionary and select S-R Interfaces. Click the Add button to create a
new AUTOSAR S-R data interface. Specify its name and the number of associated S-R data
elements.

2 Select and expand the new S-R interface. Select DataElements, and modify the AUTOSAR data
element attributes.

 Configure AUTOSAR Sender-Receiver Communication

4-95

3 In the AUTOSAR Dictionary, expand the AtomicComponents node and select an AUTOSAR
component. Expand the component.

4 Select and use the ReceiverPorts, SenderPorts, and SenderReceiverPorts views to add
AUTOSAR S-R ports that you want to associate with the new S-R interface. For each new S-R
port, select the S-R interface you created.

Optionally, examine the communication attributes for each S-R port and modify where required.
For more information, see “Configure AUTOSAR Sender-Receiver Port ComSpecs” on page 4-107.

5 Open the Code Mappings editor. Select and use the Inports and Outports tabs to map Simulink
inports and outports to AUTOSAR S-R ports. For each inport or outport, select an AUTOSAR port,
data element, and data access mode.

Configure AUTOSAR Provide-Require Port
AUTOSAR Release 4.1 introduced the AUTOSAR provide-require port (PRPort). Modeling an
AUTOSAR PRPort involves using a Simulink inport and outport pair with matching data type,
dimension, and signal type. You can associate a PRPort with a sender-receiver (S-R) interface or a
nonvolatile (NV) data interface.

To configure an AUTOSAR PRPort for S-R communication in Simulink:

1 Open a model that is configured for AUTOSAR, and in which a runnable has an inport and an
outport suitable for pairing into an AUTOSAR PRPort. In this example, the RPort_DE1 inport
and PPort_DE1 outport both use data type int8, port dimension 1, and signal type real.

2 Open the AUTOSAR Dictionary and navigate to the SenderReceiverPorts view. (To configure a
PRPort for NV communication, use the NvSenderReceiverPorts view instead.)

4 AUTOSAR Component Development

4-96

3
To add a sender-receiver port, click the Add button . In the Add Ports dialog box, specify
Name as PRPort and select an Interface from the list of available S-R interfaces. Click Add.

4 Open the Code Mappings editor and select the Inports tab. To map a Simulink inport to the
AUTOSAR sender-receiver port you created, select the inport, set Port to the value PRPort, and
set Element to a data element that the inport and outport will share.

5 Select the Outports tab. To map a Simulink outport to the AUTOSAR sender-receiver port you
created, select the outport, set Port to the value PRPort, and set Element to the same data
element selected in the previous step.

6 Click the Validate button to validate the updated AUTOSAR component configuration. If
errors are reported, address them and then retry validation. A common error flagged by
validation is mismatched properties between the inport and outport that are mapped to the
AUTOSAR PRPort.

Alternatively , you can programmatically add and map a PRPort port using AUTOSAR property and
map functions. The following example adds an AUTOSAR PRPort (sender-receiver port) and then
maps it to a Simulink inport and outport pair.
hModel = 'my_autosar_expfcns';
open_system(hModel)
arProps = autosar.api.getAUTOSARProperties(hModel);
swcPath = find(arProps,[],'AtomicComponent')

 Configure AUTOSAR Sender-Receiver Communication

4-97

swcPath =
 'ASWC

add(arProps,'ASWC','SenderReceiverPorts','PRPort','Interface','Interface1')
prportPath = find(arProps,[],'DataSenderReceiverPort')

prportPath =
 'ASWC/PRPort'

slMap = autosar.api.getSimulinkMapping(hModel);
mapInport(slMap,'RPort_DE1','PRPort','DE1','ImplicitReceive')
mapOutport(slMap,'PPort_DE1','PRPort','DE1','ImplicitSend')
[arPortName,arDataElementName,arDataAccessMode] = getOutport(slMap,'PPort_DE1')

arPortName =
PRPort

arDataElementName =
DE1

arDataAccessMode =
ImplicitSend

Configure AUTOSAR Receiver Port for IsUpdated Service
AUTOSAR defines quality-of-service attributes, such as ErrorStatus and IsUpdated, for sender-
receiver interfaces. The IsUpdated attribute allows an AUTOSAR explicit receiver to detect whether
a receiver port data element has received data since the last read occurred. When data is idle, the
receiver can save computational resources.

For the sender, the AUTOSAR Runtime Environment (RTE) sets the status of an update flag,
indicating whether the data element has been written. The receiver calls the
Rte_IsUpdated_Port_Element API, which reads the update flag and returns a value indicating
whether the data element has been updated since the last read.

In Simulink, you can:

• Import an AUTOSAR receiver port for which IsUpdated service is configured.
• Configure an AUTOSAR receiver port for IsUpdated service.
• Generate C and ARXML code for an AUTOSAR receiver port for which IsUpdated service is
configured.

To model IsUpdated service in Simulink, you pair an inport that is configured for
ExplicitReceive data access with a new inport configured for IsUpdated data access. To
configure an AUTOSAR receiver port for IsUpdated service:

1 Open a model for which an AUTOSAR sender-receiver interface is configured.
2 Identify the inport that corresponds to the AUTOSAR receiver port for which IsUpdated service

is required. Create a second inport, set its data type to boolean, and connect it to the same
block. For example:

4 AUTOSAR Component Development

4-98

3 Open the Code Mappings editor. Select the Inports tab. In the inports view, configure the
mapping properties for both inports.

a If the data inport is not already configured, set DataAccessMode to ExplicitReceive.
Select Port and Element values that map the inport to the AUTOSAR receiver port and data
element for which IsUpdated service is required.

b For the quality-of-service inport, set DataAccessMode to IsUpdated. Select Port and
Element values that exactly match the data inport.

4 To validate the AUTOSAR component configuration, click the Validate button .
5 Build the model and inspect the generated code. The generated C code contains an

Rte_IsUpdated API call.

if (Rte_IsUpdated_Input_DE1()) {
 …
 Rte_Read_Input_DE1(&tmp);
 …
}

The exported ARXML code contains the ENABLE-UPDATE setting true for the AUTOSAR
receiver port.

<R-PORT-PROTOTYPE UUID="...">
 <SHORT-NAME>Input</SHORT-NAME>
 <REQUIRED-COM-SPECS>
 <NONQUEUED-RECEIVER-COM-SPEC>
 <DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">/pkg/if/Input/DE1
 </DATA-ELEMENT-REF>
 …
 <ENABLE-UPDATE>true</ENABLE-UPDATE>
 …
 </NONQUEUED-RECEIVER-COM-SPEC>
 </REQUIRED-COM-SPECS>
 …
</R-PORT-PROTOTYPE>

Configure AUTOSAR Sender-Receiver Data Invalidation
The AUTOSAR standard defines an invalidation mechanism for AUTOSAR data elements used in
sender-receiver (S-R) communication. A sender component can notify a downstream receiver
component that data in a sender port is invalid. Each S-R data element can have an invalidation
policy. In Simulink, you can:

• Import AUTOSAR sender-receiver data elements for which an invalidation policy is configured.
• Use a Signal Invalidation block to model sender-receiver data invalidation for simulation and code

generation. Using block parameters, you can specify a signal invalidation policy and an initial
value for an S-R data element.

• Generate C code and ARXML descriptions for AUTOSAR sender-receiver data elements for which
an invalidation policy is configured.

 Configure AUTOSAR Sender-Receiver Communication

4-99

For each S-R data element, you can set the Signal Invalidation block parameter Signal invalidation
policy to Keep, Replace, or DontInvalidate. If an input data value is invalid (invalidation control
flag is true), the resulting action is determined by the value of Signal invalidation policy:

• Keep - Replace the input data value with the last valid signal value.
• Replace - Replace the input data value with an Initial value parameter.
• DontInvalidate - Do not replace the input data value.

To configure an invalidation policy for an AUTOSAR S-R data element in Simulink:

1 Open a model for which an AUTOSAR sender-receiver interface is configured. For example,
suppose that:

• A Simulink outport named Out is mapped to AUTOSAR sender port PPort and data element
OutElem. In the AUTOSAR Dictionary, AUTOSAR sender port PPort selects S-R interface
Out, which contains the data element OutElem.

• A Simulink inport named In1 is mapped to AUTOSAR receiver port RPort1 and data element
InElem1. In the AUTOSAR Dictionary, AUTOSAR receiver port RPort1 selects S-R interface
In1, which contains the data element InElem1. In the Code Mappings editor, Inports tab,
here is the mapping for inport In1.

2 Add a Signal Invalidation block to the model.

a The block must be connected directly to a root outport block. Connect the block to root
outport Out.

b Connect the first block input, a data value, to the data path from root inport In1.
c For the second block input, an invalidation control flag, add a root inport named In2 to the

model. Set its data type to scalar boolean. Map the new inport to a second AUTOSAR
sender port. If a second AUTOSAR sender port does not exist, use the AUTOSAR Dictionary
to create the AUTOSAR port, S-R interface, and data element.

In this example, Simulink inport In2 is mapped to AUTOSAR receiver port RPort2 and data
element InElem2. In the AUTOSAR Dictionary, AUTOSAR receiver port RPort2 selects S-R
interface In2, which contains the data element InElem2.

4 AUTOSAR Component Development

4-100

Connect the second block input to root inport In2.

3 View the Signal Invalidation block parameters dialog box. Examine the Signal invalidation
policy and Initial value attributes. For more information, see the Signal Invalidation block
reference page.

4 Open the Code Mappings editor and select the Outports tab. For the root outport Out, verify
that the AUTOSAR data access mode is set to ExplicitSend or EndToEndWrite.

5 To validate the AUTOSAR component configuration, open the Code Mappings editor and click the
Validate button .

6 Build the model and inspect the generated code. When the signal is valid, the generated C code
calls Rte_Write_Port_Element. When the signal is invalid, the C code calls
Rte_Invalidate_Port_Element.

 Configure AUTOSAR Sender-Receiver Communication

4-101

/* SignalInvalidation: '<Root>/Signal Invalidation' incorporates:
 * Inport: '<Root>/In2'
 */
if (!Rte_IRead_Runnable_Step_RPort2_InElem2()) {
 /* Outport: '<Root>/Out' */
 (void) Rte_Write_PPort_OutElem(mSignalInvalidation_B.Gain);
} else {
 Rte_Invalidate_PPort_OutElem();
}

The exported ARXML code contains the invalidation setting for the data element.
<INVALIDATION-POLICY>
 <DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">/pkg/if/Out/OutElem</DATA-ELEMENT-REF>
 <HANDLE-INVALID>KEEP</HANDLE-INVALID>
</INVALIDATION-POLICY>

Configure AUTOSAR S-R Interface Port for End-To-End Protection
AUTOSAR end-to-end (E2E) protection for sender and receiver ports is based on the E2E library. E2E
is a C library that you use to transmit data securely between AUTOSAR components. End-to-end
protection adds additional information to an outbound data packet. The component receiving the
packet can then verify independently that the received data packet matches the sent packet.
Potentially, the receiving component can detect errors and take action.

For easier integration of AUTOSAR generated code with AUTOSAR E2E solutions, Embedded Coder
supports AUTOSAR E2E protection. In Simulink, you can:

• Import AUTOSAR sender port and receiver ports for which E2E protection is configured.
• Configure an AUTOSAR sender or receiver port for E2E protection.
• Generate C and ARXML code for AUTOSAR sender and receiver ports for which E2E protection is
configured.

Simulink supports using either the E2E Transformer method or the E2E Protection Wrapper to
implement end-to-end protection in the generated code. You can retrieve which end-to-end protection
method is configured by using the function getDataDefaults. You set the end-to-end protection
method by using the function setDataDefaults.

• E2E Transformer:

• Is invoked by the AUTOSAR runtime environment (RTE). E2E transformer generates
Rte_Write and Rte_Read calls that take an additional transformer error argument,
Rte_TransformerError, to indicate error status.

• Is supported when using AUTOSAR schema version 4.2 and later.
• E2E Protection Wrapper:

• Inserts a wrapper around the Rte_Write and Rte_Read functions. The body of the E2E
protection wrapper that contains the Rte_Write and Rte_Read calls is implemented external
to the generated code.

• Is the default end-to-end protection method.

Configure E2E protection for individual AUTOSAR sender and receiver ports that use explicit write
and read data access modes. When you change the data access mode of an AUTOSAR port from
explicit write to end-to-end write, or from explicit read to end-to-end read.

• Simulation behavior is unaffected.

4 AUTOSAR Component Development

4-102

• Code generation is similar to explicit write and read, with these differences:

Generated Item E2E Protection Wrapper E2E Transformer
Generated Code for
Initialization

Calls
E2EPW_ReadInit_<Port> or
E2EPW_WriteInit_<Port>

None

Generated Code for Function
Signature

Uses uint32
E2EPW_Read_<Port>(data*)
or (void)
E2EPW_Write_<Port>

Uses uint8
Rte_Read_<Port>(data*,
Rte_TransformerError*) or
(void)Rte_Write_<Port>(d
ata,
Rte_TransformerError*)

ARXML Exporter for Receiver
and Sender COM-SPECs

Generates property USES-END-
TO-END-PROTECTION with
value true

Generates property USES-END-
TO-END-PROTECTION with
value true

ARXML Exporter for Receiver
and Sender API Extensions
PORT-API-OPTIONS

None Generates property ERROR-
HANDLING with value
TRANSFORMER-ERROR-
HANDLING

To configure an AUTOSAR sender or receiver port for E2E transformer protection:

1 Open a model for which an AUTOSAR sender-receiver interface is configured.
2 In the MATLAB Command Window, configure TransformerError as the default E2E protection

method.

slMap = autosar.api.getSimulinkMapping(modelName);
setDataDefaults(slMap, 'InportsOutports', ...
 'EndToEndProtectionMethod', 'TransformerError');

3 Open the Configuration Parameters. Verify the AUTOSAR schema version is 4.2 or later.
4 Open the Code Mappings editor. Navigate to the Simulink inport or outport that models the

AUTOSAR receiver or sender port for which you want to configure E2E protection. Select the
port.

5 Set the AUTOSAR data access mode to EndToEndRead (inport) or EndToEndWrite (outport).

6 To validate the AUTOSAR component configuration, click the Validate button .
7 Build the model and inspect the generated code.

The generated C code contains RTE read and write API calls that pass the transformer error
argument.

 Configure AUTOSAR Sender-Receiver Communication

4-103

void Runnable(void)
{
 Rte_TransformerError transformerError_Input;
 float64 tmpRead;
 …
 /* Inport: '<Root>/Input' */
 Rte_Read_RPort_InputDE(&tmpRead, &transformerError_Input);
 …
 /* Outport: '<Root>/Output'... */
 (void) Rte_Write_PPort_OutputDE(data, &transformerError_Input);
 …
}

The generated header file Rte_model.h contains the transformer error declaration.

/* Transformer Classes */
typedef enum {
 RTE_TRANSFORMER_UNSPECIFIED = 0x00,
 RTE_TRANSFORMER_SERIALIZER = 0x01,
 RTE_TRANSFORMER_SAFETY = 0x02,
 RTE_TRANSFORMER_SECURITY = 0x03,
 RTE_TRANSFORMER_CUSTOM = 0xff
} Rte_TransformerClass;

typedef uint8 Rte_TransformerErrorCode;

typedef struct {
 Rte_TransformerErrorCode errorCode;
 Rte_TransformerClass transformerClass;
} Rte_TransformerError;

The exported ARXML code contains the E2E settings for the AUTOSAR receiver and sender
ports.

<REQUIRED-COM-SPECS>
 <NONQUEUED-RECEIVER-COM-SPEC>
 …
 <USES-END-TO-END-PROTECTION>true</USES-END-TO-END-PROTECTION>
 …
 <NONQUEUED-SENDER-COM-SPEC>
 …
 <USES-END-TO-END-PROTECTION>true</USES-END-TO-END-PROTECTION>
 …
</REQUIRED-COM-SPECS>
…
</PORT-API-OPTIONS>
 <PORT-API-OPTION>
 <ERROR-HANDLING>TRANSFORMER-ERROR-HANDLING</ERROR-HANDLING>
 <PORT-REF DEST="R-PORT-PROTOTYPE">/pkg/swc/ASWC/RPort</PORT-REF>
 </PORT-API-OPTION>
 …
 <PORT-API-OPTION>
 <ERROR-HANDLING>TRANSFORMER-ERROR-HANDLING</ERROR-HANDLING>
 <PORT-REF DEST="P-PORT-PROTOTYPE">/pkg/swc/ASWC/PPort</PORT-REF>
 </PORT-API-OPTION>
 …
</PORT-API-OPTIONS>

To configure an AUTOSAR sender or receiver port for E2E wrapper protection:

1 Open a model for which an AUTOSAR sender-receiver interface is configured.
2 In the MATLAB Command Window, configure ProtectionWrapper as the default E2E

protection method.

4 AUTOSAR Component Development

4-104

slMap = autosar.api.getSimulinkMapping(modelName);
setDataDefaults(slMap, 'InportsOutports', ...
 'EndToEndProtectionMethod', 'ProtectionWrapper');

3 Open the Code Mappings editor. Navigate to the Simulink inport or outport that models the
AUTOSAR receiver or sender port for which you want to configure E2E protection. Select the
port.

4 Set the AUTOSAR data access mode to EndToEndRead (inport) or EndToEndWrite (outport).

5 To validate the AUTOSAR component configuration, click the Validate button .
6 Build the model and inspect the generated code. The generated C code contains E2E API calls.

void Runnable_Step(void)
{
 …
 /* Inport: '<Root>/Input' */
 E2EPW_Read_RPort_InputDE(…);
 …
 /* Outport: '<Root>/Output'... */
 (void) E2EPW_Write_PPort_OutputDE(…);
 …
}
…
void Runnable_Init(void)
{
 …
 /* End-to-End (E2E) initialization */
 E2EPW_ReadInit_RPort_InputDE();
 E2EPW_WriteInit_PPort_OutputDE();
 …
}

The exported ARXML code contains the E2E settings for the AUTOSAR receiver and sender
ports.
<NONQUEUED-RECEIVER-COM-SPEC>
 …
 <USES-END-TO-END-PROTECTION>true</USES-END-TO-END-PROTECTION>
…
<NONQUEUED-SENDER-COM-SPEC>
 …
 <USES-END-TO-END-PROTECTION>true</USES-END-TO-END-PROTECTION>
…

Configure AUTOSAR Receiver Port for DataReceiveErrorEvent
In AUTOSAR sender-receiver communication between software components, the Runtime
Environment (RTE) raises a DataReceiveErrorEvent when the communication layer reports an
error in data reception by the receiver component. For example. the event can indicate that the
sender component failed to reply within an AliveTimeout limit, or that the sender component sent
invalid data.

 Configure AUTOSAR Sender-Receiver Communication

4-105

Embedded Coder supports creating DataReceiveErrorEvents in AUTOSAR receiver components.
In Simulink, you can:

• Import an AUTOSAR DataReceiveErrorEvent definition.
• Define a DataReceiveErrorEvent.
• Generate ARXML code for AUTOSAR receiver ports for which a DataReceiveErrorEvent is
configured.

You should configure a DataReceiveErrorEvent for an AUTOSAR receiver port that uses
ImplicitReceive, ExplicitReceive, or EndToEndRead data access mode.

To configure an AUTOSAR receiver port for a DataReceiveErrorEvent:

1 Open a model for which the receiver side of an AUTOSAR sender-receiver interface is configured.
2 Open the Code Mappings editor. Select the Inports tab. Select the data inport that is mapped to

the AUTOSAR receiver port for which you want to configure a DataReceiveErrorEvent. Set its
AUTOSAR data access mode to ImplicitReceive, ExplicitReceive, or EndToEndRead.
Here are two examples, without and with a coupled ErrorStatus port.

3 Open the AUTOSAR Dictionary. Expand the AtomicComponents node. Expand the receiver
component and select Runnables.

4 In the runnables view, create a runnable to handle DataReceiveErrorEvents.

a
Click the Add button to add a runnable entry.

b Select the new runnable entry to configure its name and other properties.
c Go to the Events pane, and configure a DataReceiveErrorEvent for the runnable. Click

Add Event, select type DataReceiveErrorEvent, and enter an event name.
d Under Event Properties, select the trigger for the event. The selected trigger value

indicates the AUTOSAR receiver port and the data element for which the runnable is
handling DataReceiveErrorEvents.

4 AUTOSAR Component Development

4-106

Alternatively, you can programmatically create a DataReceiveErrorEvent.
arProps = autosar.api.getAUTOSARProperties(mdlname);
add(arProps,ibQName,'Events','DRE_Evt',...
 'Category','DataReceiveErrorEvent','Trigger','rPort.DE1',...
 'StartOnEvent',runnableQName);

5 Build the model and inspect the generated code. The exported ARXML code defines the error-
handling runnable and its triggering event.
<EVENTS>
 <DATA-RECEIVE-ERROR-EVENT UUID="...">
 <SHORT-NAME>DRE_Evt</SHORT-NAME>
 <START-ON-EVENT-REF DEST="RUNNABLE-ENTITY">
 /Root/mDemoModel_swc/ReceivingASWC/IB/Run_ErrorHandling</START-ON-EVENT-REF>
 <DATA-IREF>
 <CONTEXT-R-PORT-REF DEST="R-PORT-PROTOTYPE">
 /Root/mDemoModel_swc/ReceivingASWC/rPort</CONTEXT-R-PORT-REF>
 <TARGET-DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">
 /Root/Interfaces/In/DE</TARGET-DATA-ELEMENT-REF>
 </DATA-IREF>
 </DATA-RECEIVE-ERROR-EVENT>
</EVENTS>
...
<RUNNABLES>
 ...
 <RUNNABLE-ENTITY UUID="...">
 <SHORT-NAME>Run_ErrorHandling</SHORT-NAME>
 <MINIMUM-START-INTERVAL>0</MINIMUM-START-INTERVAL>
 <CAN-BE-INVOKED-CONCURRENTLY>false</CAN-BE-INVOKED-CONCURRENTLY>
 ...
 <SYMBOL>Run_ErrorHandling</SYMBOL>
 </RUNNABLE-ENTITY>
</RUNNABLES>

Configure AUTOSAR Sender-Receiver Port ComSpecs
In AUTOSAR software components, a sender or receiver port optionally can specify a communication
specification (ComSpec). ComSpecs describe additional communication requirements for port data.

 Configure AUTOSAR Sender-Receiver Communication

4-107

To model AUTOSAR sender and receiver ComSpecs in Simulink, you can:

• Import sender and receiver ComSpecs from ARXML files.
• Create sender and receiver ComSpecs in Simulink.
• For nonqueued sender ports, modify ComSpec attribute InitValue.
• For nonqueued receiver ports, modify ComSpec attributes AliveTimeout,

HandleNeverReceived, and InitValue.
• For queued receiver ports, modify ComSpec attribute QueueLength.
• Export ComSpecs to ARXML files

For example, if you create an AUTOSAR receiver port in Simulink, you use the Code Mappings editor
to map a Simulink inport to the AUTOSAR receiver port and an S-R data element. You can then select
the port and specify its ComSpec attributes.

Here are the properties for a queued receiver port.

4 AUTOSAR Component Development

4-108

If you import or create an AUTOSAR receiver port, you can use the AUTOSAR Dictionary to view and
edit the ComSpec attributes of the mapped S-R data elements in the AUTOSAR port.

To programmatically modify ComSpec attributes of an AUTOSAR port, use the AUTOSAR property
function set. For example:
hModel = 'autosar_swc';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
arProps = autosar.api.getAUTOSARProperties(hModel);

% Find ComSpec path
portPath = find(arProps,[],'DataReceiverPort','PathType','FullyQualified');
ifPath = find(arProps,[],'SenderReceiverInterface','Name','Input_If','PathType','FullyQualified');
dataElementPath = find(arProps,ifPath{1},'FlowData','Name','In1','PathType','FullyQualified');
infoPath = find(arProps,portPath{1},'PortInfo',...
 'PathType','FullyQualified','DataElements',dataElementPath{1});
comSpecPath = find(arProps,infoPath{1},'PortComSpec','PathType','FullyQualified');

% Set ComSpec attributes
set(arProps,comSpecPath{1},'AliveTimeout',30,'HandleNeverReceived',true,'InitValue',1);
get(arProps,comSpecPath{1},'AliveTimeout')
get(arProps,comSpecPath{1},'HandleNeverReceived')
get(arProps,comSpecPath{1},'InitValue')

To set the QueueLength attribute for a queued receiver port:
set(arProps,comSpecPath,'QueueLength',10);

When you generate code for an AUTOSAR model that specifies ComSpec attributes, the exported
ARXML port descriptions include the ComSpec attribute values.
<PORTS>
 <R-PORT-PROTOTYPE UUID="...">
 <SHORT-NAME>ReceivePort</SHORT-NAME>
 <REQUIRED-COM-SPECS>
 <NONQUEUED-RECEIVER-COM-SPEC>
 <DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">
 /Company/Powertrain/Interfaces/Input_If/In1
 </DATA-ELEMENT-REF>
...
 <ALIVE-TIMEOUT>30</ALIVE-TIMEOUT>

 Configure AUTOSAR Sender-Receiver Communication

4-109

 <HANDLE-NEVER-RECEIVED>true</HANDLE-NEVER-RECEIVED>
...
 <INIT-VALUE>
 <CONSTANT-REFERENCE>
 <SHORT-LABEL>DefaultInitValue_Double_1</SHORT-LABEL>
 <CONSTANT-REF DEST="CONSTANT-SPECIFICATION">
 /Company/Powertrain/Constants/DefaultInitValue_Double_1
 </CONSTANT-REF>
 </CONSTANT-REFERENCE>
 </INIT-VALUE>
 </NONQUEUED-RECEIVER-COM-SPEC>
 </REQUIRED-COM-SPECS>
 </R-PORT-PROTOTYPE>
</PORTS>
...
<CONSTANT-SPECIFICATION UUID="...">
 <SHORT-NAME>DefaultInitValue_Double_1</SHORT-NAME>
 <VALUE-SPEC>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>DefaultInitValue_Double_1</SHORT-LABEL>
 <VALUE>1</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 </VALUE-SPEC>
</CONSTANT-SPECIFICATION>

See Also
Signal Invalidation

Related Examples
• “Model AUTOSAR Communication” on page 2-22
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-110

Configure AUTOSAR Queued Sender-Receiver Communication
In AUTOSAR queued sender-receiver (S-R) communication, AUTOSAR software components read and
write data to other components or services. Data sent by an AUTOSAR sender software component is
added to a queue provided by the AUTOSAR Runtime Environment (RTE). Newly received data does
not overwrite existing unread data. Later, a receiver software component reads the data from the
queue.

To implement queued S-R communication, AUTOSAR software components define:

• An AUTOSAR sender-receiver interface with data elements.
• AUTOSAR provide and require ports that send and receive queued data.

In Simulink, you can:

1 Create AUTOSAR queued S-R interfaces and ports by using the AUTOSAR Dictionary.
2 Model AUTOSAR provide and require ports by using Simulink root-level outports and inports.
3 Map the outports and inports to AUTOSAR provide and require ports by using the Code

Mappings editor. Set the AUTOSAR data access modes to QueuedExplicitSend or
QueuedExplicitReceive.

To model sending and receiving AUTOSAR data using a queue, use Simulink Send and Receive
blocks. If your queued S-R communication implementation involves states or requires decision logic,
use Stateflow charts. You can handle errors that occur when the queue is empty or full. You can
specify the size of the queue. For more information, see “Simulink Messages Overview”.

You can simulate AUTOSAR queued sender-receiver (S-R) communication between component
models, for example, in a composition-level simulation. Data senders and receivers can run at
different rates. Multiple data senders can communicate with a single data receiver.

To get started, you can import components with queued S-R interfaces and ports from ARXML files
into Simulink, or use Simulink to create the interfaces and ports.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-111

In this section...
“Simulink Workflow for Modeling AUTOSAR Queued Send and Receive” on page 4-112
“Configure AUTOSAR Sender and Receiver Components for Queued Communication” on page 4-113
“Implement AUTOSAR Queued Send and Receive Messaging” on page 4-115
“Configure Simulation of AUTOSAR Queued Sender-Receiver Communication” on page 4-118
“Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication” on page 4-119
“Simulate Event-Driven AUTOSAR Queued Sender-Receiver Communication” on page 4-121
“Implement AUTOSAR Queued Send and Receive By Using Stateflow Messaging” on page 4-125

Simulink Workflow for Modeling AUTOSAR Queued Send and Receive
This procedure outlines the general workflow for modeling AUTOSAR queued sender and receiver
components in Simulink.

1 Configure one or more models as AUTOSAR queued sender components, and one model as an
AUTOSAR queued receiver component. For each component model, use the AUTOSAR Dictionary
and the Code Mappings editor to:

a Create an S-R data interface and its data elements.
b Create a sender or receiver port.
c Map the sender or receiver port to a Simulink outport for sending or inport for receiving. Set

the AUTOSAR data access mode to QueuedExplicitSend or QueuedExplicitReceive.

For example, see “Configure AUTOSAR Sender and Receiver Components for Queued
Communication” on page 4-113.

2 To implement AUTOSAR queued sender or receiver component behavior, use Simulink Send and
Receive blocks. For more information, see “Simulink Messages Overview”.

If your queued S-R communication implementation involves states or requires decision logic, use
Stateflow charts.

For more information, see “Implement AUTOSAR Queued Send and Receive Messaging” on page
4-115.

3 When you build an AUTOSAR queued sender or receiver component model:

• Generated C code contains calls to AUTOSAR Rte_Send_<port>_<DataElement> or
Rte_Receive_<port>_<DataElement> APIs.

The generated code handles the status of the message receive calls.

Handling of message send status (such as queue overflow) can only be modeled in Stateflow.
The generated code handles message send status only if a queued sender component
implements the Stateflow logic.

• Exported ARXML files contain descriptions for queued sender-receiver communication. The
generated ComSpec for a queued port includes the port type and the queue length (based on
Simulink message property QueueCapacity). In the SwDataDefProps generated for the
queued port data element, SwImplPolicy is set to Queued.

4 AUTOSAR Component Development

4-112

4 To simulate AUTOSAR queued sender-receiver communication in Simulink, create a containing
composition, system, or harness model. Include the queued sender and receiver components as
referenced models.

5 To provide queueing logic between sender and receiver components, you can insert a Simulink
Queue block or Stateflow logic. With a Queue block, you can simulate a queue with a specific
capacity. If you connect sender and receiver components directly, Simulink inserts a default
queue with capacity 1.

For an example of connecting components directly, see the 1-to-1 composition model used in
“Configure Simulation of AUTOSAR Queued Sender-Receiver Communication” on page 4-118.

For examples of inserting a Queue block or Stateflow logic between sender and receiver
components, see “Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication” on page
4-119 and “Simulate Event-Driven AUTOSAR Queued Sender-Receiver Communication” on page
4-121.

Configure AUTOSAR Sender and Receiver Components for Queued
Communication
This example configures AUTOSAR queued sender and receiver components in Simulink. The
example uses two models in the folder matlabroot/help/toolbox/autosar/examples (cd to
folder). If you copy the files to a working folder, collocate the models. To see these models connected
for simulation, see “Configure Simulation of AUTOSAR Queued Sender-Receiver Communication” on
page 4-118.

• mAutosarSlSenderSWC1.slx
• mAutosarSlReceiverSWC.slx

Open an AUTOSAR model that you want to configure as a queued sender or receiver component. To
create an S-R data interface and a queued sender or receiver port:

1 Open the AUTOSAR Dictionary.
2

Select S-R Interfaces. To create an S-R data interface, click the Add button . Specify its
name and the number of associated S-R data elements. This example uses one data element in
both the sender and receiver components.

3 Select and expand the new S-R interface. Select DataElements and modify the data element
attributes. This figure shows data element DE1 for the sender component.

4 Expand the AtomicComponents node and select an AUTOSAR component. Expand the
component.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-113

5 Select the SenderPorts or ReceiverPorts view and use it to add the sender or receiver port you
require. For each S-R port, select the S-R interface you created. For the sender component, this
figure shows sender port MsgOut, which uses S-R interface Out1.

6 Open the Code Mappings editor. Select the Inports or Outports tab and use it to map a Simulink
inport or outport to an AUTOSAR queued S-R port. For each inport or outport, select an
AUTOSAR port, data element, and data access mode. Set the AUTOSAR data access mode to
QueuedExplicitSend or QueuedExplicitReceive. In the sender component, this figure
shows Simulink outport MsgOut, which is mapped to AUTOSAR sender port MsgOut and data
element DE1, with data access mode QueuedExplicitSend.

When you map an inport to an AUTOSAR queued receiver port, you can use either the Code
Mappings or AUTOSAR Dictionary view of the port to modify its AUTOSAR communication
specification (ComSpec) attribute QueueLength. Select the inport in Code Mappings and either

click the icon or open the AUTOSAR Dictionary. For more information, see “Configure
AUTOSAR Sender-Receiver Port ComSpecs” on page 4-107.

When you build an AUTOSAR queued sender or receiver component model:

• Generated C code contains calls to AUTOSAR Rte_Send_<port>_<DataElement> or
Rte_Receive_<port>_<DataElement> APIs. The generated code handles the status of the
message send and receive calls.

• Exported ARXML files contain descriptions for queued sender-receiver communication. The
generated ComSpec for a queued port includes the port type and the queue length (based on
Simulink message property QueueCapacity). In the SwDataDefProps generated for the queued
port data element, SwImplPolicy is set to Queued.

To implement the messaging behavior of an AUTOSAR queued sender or receiver component, use
Simulink or Stateflow messages. See “Implement AUTOSAR Queued Send and Receive Messaging”
on page 4-115 or “Implement AUTOSAR Queued Send and Receive By Using Stateflow Messaging” on
page 4-125.

4 AUTOSAR Component Development

4-114

Implement AUTOSAR Queued Send and Receive Messaging
To model AUTOSAR queued sender and receiver component behavior, this example uses:

• Simulink message blocks to implement messaging.
• Stateflow charts to implement decision logic.

This example explains the construction of the example models mAutosarSlSenderSWC1.slx and
mAutosarSlReceiverSWC.slx. These models are located in the folder matlabroot/help/
toolbox/autosar/examples (cd to folder).

Other examples deploy the same sender and receiver models in 1-to-1 and N-to-1 messaging
configurations. See “Configure Simulation of AUTOSAR Queued Sender-Receiver Communication” on
page 4-118 and “Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication” on page 4-119.

This figure shows the top level of AUTOSAR queued sender component mAutosarSlSenderSWC1.
The model contains:

• Stateflow chart Turn Signal Generator.
• A Simulink message Send block, wrapped in an enabled subsystem.

The chart has turn-signal and message-control outputs, which are connected to the enabled
subsystem. When the message-control signal becomes a positive value, the subsystem is enabled.
Inside the subsystem, the message Send block reads the turn-signal data value, and sends a message
containing the value to root outport MsgOut.

This figure shows the logic implemented in the Turn Signal Generator chart. The chart has four
states – ActivateLeft, DeactivateLeft, ActivateRight, and DeactivateRight. Each state
contains entry actions that assign a turn-signal data value and set the message-control value to true.
(See “Communicate with Stateflow Charts by Sending Messages” (Stateflow).) Periodic timing drives
the message output.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-115

This figure shows the top level of AUTOSAR queued receiver component mAutosarSlReceiverSWC.
The model contains:

• A Simulink message Receive block.
• Stateflow chart HMILogic.

The root inport MsgIn provides a message to the Receive block, which extracts the turn-signal data
value from the message. The block then outputs message-received and turn-signal data values to the
Stateflow chart.

The Receive block parameters are set to their Simulink defaults. For example, Show receive status
is selected, Use internal queue is cleared, and Value source when queue is empty is set to Hold
last value.

This figure shows the logic implemented in the HMILogic chart. HMILogic contains states
HMIRequestProcessing, LeftTurnSignal, and RightTurnSignal.

• HMIRequestProcessing receives the message-received and turn-signal data inputs, sets an
isNewData flag, calls a function to process the turn-signal data, and then clears the isNewData
flag. The processRequest function tests the received turn-signal data for values potentially set
by the message sender -- LeftTurnOn, RightTurnOn, LeftTurnOff, or RightTurnOff. Based

4 AUTOSAR Component Development

4-116

on the value received, the function increments or decrements a request counter variable, either
leftTurnReqs or rightTurnReqs. Periodic timing drives the message input.

• LeftTurnSignal and RightTurnSignal each contain states Off and On. They transition from
Off to On based on the value of request counter leftTurnReqs or rightTurnReqs and a time
interval. When the request counter is greater than zero, the charts set a variable, either
leftSignalOut or rightSignalOut, to 1. After a time interval, they transition back to the Off
state and set leftSignalOut or rightSignalOut to 0.

For sample implementations of multiple queued sender components in an N-to-1 messaging
configuration, see the example models used in “Simulate N-to-1 AUTOSAR Queued Sender-Receiver
Communication” on page 4-119.

For sample implementations of event-driven queued messaging, see the example models used in
“Simulate Event-Driven AUTOSAR Queued Sender-Receiver Communication” on page 4-121.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-117

Configure Simulation of AUTOSAR Queued Sender-Receiver
Communication
To simulate AUTOSAR queued sender-receiver communication in Simulink, create a containing
composition, system, or harness model. Include the queued sender and receiver components as
referenced models.

• If you have one sender component and one receiver component, you potentially can connect the
models directly. This example directly connects sender and receiver component models.

• If you are simulating N-to-1 or event-driven messaging, you provide additional logic between
sender and receiver component models. For example, see “Simulate N-to-1 AUTOSAR Queued
Sender-Receiver Communication” on page 4-119 and “Simulate Event-Driven AUTOSAR Queued
Sender-Receiver Communication” on page 4-121.

This example shows a composition-level model that contains queued sender and receiver component
models and implements 1-to-1 communication. Periodic timing drives the messaging. The example
uses three models in the folder matlabroot/help/toolbox/autosar/examples (cd to folder). If
you copy the files to a working folder, collocate the models.

• mAutosarSlQueuedMsgs_1_1.slx (top model)
• mAutosarSlSenderSWC1.slx
• mAutosarSlReceiverSWC.slx

Models mAutosarSlSenderSWC1 and mAutosarSlReceiverSWC are the same sender and receiver
components configured in “Configure AUTOSAR Sender and Receiver Components for Queued
Communication” on page 4-113 and implemented in “Implement AUTOSAR Queued Send and Receive
Messaging” on page 4-115. Composition-level model mAutosarSlQueuedMsgs_1_1 includes them as
referenced models and connects sender component port MsgOut to receiver component port MsgIn.

The top model mAutosarSlQueuedMsgs_1_1 is for simulation only. You can generate AUTOSAR C
code and ARXML files for the sender and receiver component models, but not for the containing
composition-level model.

Similarly, you can run software-in-the-loop (SIL) simulation for the sender and receiver component
models, but not for the composition-level model.

4 AUTOSAR Component Development

4-118

Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication
This example shows a composition-level model that contains three sender and one receiver
component models, and implements N-to-1 communication. Periodic timing drives the messaging. The
example extends the 1-to-1 example by adding two additional sender models and providing flow logic
between the senders and receiver.

This example uses four models in the folder matlabroot/help/toolbox/autosar/examples (cd
to folder). If you copy the files to a working folder, collocate the models.

• mAutosarSlQueuedMsgs_N_1.slx (top model)
• mAutosarSlSenderSWC1.slx
• mAutosarSlSenderSWC2.slx
• mAutosarSlSenderSWC3.slx
• mAutosarSlReceiverSWC.slx

Composition-level model mAutosarSlQueuedMsgs_N_1 includes three sender components and a
receiver component as referenced models. It connects the sender component MsgOut ports to
intermediate MsgJoin processing logic, which in turn connects to a receiver component MsgIn port.

Models mAutosarSlSenderSWC1 and mAutosarSlReceiverSWC are the same sender and receiver
components configured in “Configure AUTOSAR Sender and Receiver Components for Queued
Communication” on page 4-113 and implemented in “Implement AUTOSAR Queued Send and Receive
Messaging” on page 4-115. The second and third sender components, mAutosarSlSenderSWC2 and
mAutosarSlSenderSWC3, are similar to mAutosarSlSenderSWC1, but implement a second type of
message input for the receiver to process.

This figure shows the top level of AUTOSAR queued sender component mAutosarSlSenderSWC2. It
contains Stateflow chart Hazard Signal Generator, which provides logic for left-turn signals. The
chart message-line output is connected to Simulink root outport MsgOut. A corresponding Hazard

 Configure AUTOSAR Queued Sender-Receiver Communication

4-119

Signal Generator chart to handle right-turn signals appears in sender component
mAutosarSlSenderSWC3.

This figure shows the logic implemented in the Hazard Signal Generator chart. The chart has
two states – HazardOff and HazardOn. Each state contains entry actions that assign values to
message data and send messages. (See “Communicate with Stateflow Charts by Sending Messages”
(Stateflow).) Periodic timing drives the message output.

Between the sender and receiver components, a Message Merge block and a Queue block provide
message merging and queueing.

• The Message Merge block merges 3 message lines and outputs messages to the Queue block.
• The Queue block stores messages from the 3 lines in a queue, based on the order of arrival.

• The queue capacity is set to 16 messages.
• When the queue is full and a message arrives, the block is set to overwrite the oldest message

with the incoming message.
• The message sorting policy is set to the policy AUTOSAR supports, first-in first-out (FIFO).

Each element at the head of the queue departs when the downstream ReceiverSWC block is ready to
accept it.

4 AUTOSAR Component Development

4-120

The top model mAutosarSlQueuedMsgs_N_1 is for simulation only. You can generate AUTOSAR C
code and ARXML files for the referenced sender and receiver component models, but not for the
containing composition-level model.

Similarly, you can run software-in-the-loop (SIL) simulation for the sender and receiver component
models, but not for the composition-level model.

Simulate Event-Driven AUTOSAR Queued Sender-Receiver
Communication
This example shows a composition-level model in which a Simulink function-call input event activates
receiver component processing of a queued message. The example is implemented by using Stateflow
messages. For more Stateflow messaging examples, see “Implement AUTOSAR Queued Send and
Receive By Using Stateflow Messaging” on page 4-125.

This example uses three models in the folder matlabroot/help/toolbox/autosar/examples (cd
to folder). If you copy the files to a working folder, collocate the models.

• mAutosarDREventMsgs.slx (top model)
• mAutosarMsgSender.slx
• mAutosarHMILogicEvent.slx

Composition-level model mAutosarDREEventMsgs includes a sender component and a receiver
component as referenced models. It connects the sender message port DashLight to intermediate
Data Receive Trigger logic, which in turn connects to receiver message port MsgIn and function
trigger port Trigger.

This figure shows the top level of AUTOSAR queued sender component mAutosarMsgSender, which
contains Stateflow chart Turn Signal Generator. The chart message-line output is connected to
Simulink root outport DashLight. (This sender component is similar to component
mAutosarSenderSWC1 in the Stateflow 1-to-1 and N-to-1 simulation examples in “Implement
AUTOSAR Queued Send and Receive By Using Stateflow Messaging” on page 4-125.)

 Configure AUTOSAR Queued Sender-Receiver Communication

4-121

This figure shows the logic implemented in the Turn Signal Generator chart. The chart has four
states – ActivateLeft, DeactivateLeft, ActivateRight, and DeactivateRight. Each state
contains entry actions that assign a value to message data and send a message. (See “Communicate
with Stateflow Charts by Sending Messages” (Stateflow).) Periodic timing drives the message output.

This figure shows the Data Receiver Trigger chart located between the sender and receiver
components.

To receive a message, queued receiver logic uses receive(M):

• If a valid message M exists, receive(M) returns true.

4 AUTOSAR Component Development

4-122

• If a valid message does not exist, the chart removes a message from its associated queue, and
receive(M) returns true. If receive(M) removes a message from the queue, the length of the
queue drops by one.

• If message M is invalid, and another message could not be removed from the queue, receive(M)
returns false.

You can place receive on a transition (for example, [receive(M)]. Or, within a state, use an if
condition (for example, if(receive(M))). For more information, see “Communicate with Stateflow
Charts by Sending Messages” (Stateflow).

This figure shows the logic implemented in the Data Receiver Trigger chart. The chart receives
queued messages from the sender component. For each message received, the chart copies the
received message data to the outbound message, sends the data, and sends a function-call event.
(See “Communicate with Stateflow Charts by Sending Messages” (Stateflow).)

This figure shows the top level of AUTOSAR queued receiver component mAutosarHMILogicEvent,
which contains a Simulink function-call subsystem. The subsystem inports are a function-call trigger
and message receiver port DashLight, which is configured for AUTOSAR data access mode
QueuedExplicitReceive.

The function-call subsystem contains Stateflow chart ProcessHMIRequests and a Trigger Port
block. The chart message-line input is connected to Simulink root inport Msg. A scope is configured to
display the value of an InvalidPath variable.

The Trigger Port block is configured for a function-call trigger and triggered sample time. Function-
call input events sent from the Data Receiver Trigger chart in the top model activate the chart.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-123

This figure shows the logic implemented in the ProcessHMIRequests chart. ProcessHMIRequests
contains states HMIRequestProcessing, LeftTurnSignal, and RightTurnSignal. (This receiver
chart is similar to chart HMILogic in the 1-to-1 and N-to-1 simulation examples.)

• HMIRequestProcessing receives a message from the message queue, calls a function to process
the message, and then discards the message. The processRequest function tests the received
message data for values potentially set by the message sender -- LeftTurnOn, RightTurnOn,
LeftTurnOff, or RightTurnOff. Based on the value received, the function increments or
decrements a request counter variable, either leftTurnReqs or rightTurnReqs. Function-call
input events drive the message input. If the chart is incorrectly activated, the InvalidPath
variable is set to 1.

• LeftTurnSignal and RightTurnSignal each contain states Off and On. They transition from
Off to On based on the value of request counter leftTurnReqs or rightTurnReqs. When the
request counter is greater than zero, the charts set a variable, either leftSignalOut or
rightSignalOut, to 1. Then they transition back to the Off state and set leftSignalOut or
rightSignalOut to 0.

4 AUTOSAR Component Development

4-124

The top model mAutosarDREventMsgs is for simulation only. You can generate AUTOSAR C code
and ARXML files for the referenced sender and receiver component models, but not for the
containing composition-level model.

Similarly, you can run software-in-the-loop (SIL) simulation for the sender and receiver component
models, but not for the composition-level model.

Implement AUTOSAR Queued Send and Receive By Using Stateflow
Messaging
• “Implement AUTOSAR Queued Send and Receive Messaging By Using Stateflow Messages”

on page 4-126
• “Configure Simulation of AUTOSAR Queued Sender-Receiver Communication” on page 4-130
• “Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication” on page 4-131
• “Determine When a Queue Overflows” on page 4-134

 Configure AUTOSAR Queued Sender-Receiver Communication

4-125

Implement AUTOSAR Queued Send and Receive Messaging By Using Stateflow Messages

To implement AUTOSAR queued sender or receiver component behavior, this example uses Stateflow
messages. To create a Stateflow chart, follow the general procedure described in “Model Finite State
Machines by Using Stateflow Charts” (Stateflow).

1 Add a chart to the AUTOSAR queued sender or receiver component model. Name the chart.
2 Open the chart and add message-related states.
3 For each state, add entry actions. Supported message keywords include:

• send(M) -- Send message M.
• receive(M) -- Receive message M.
• isvalid(M) -- Check if message M is valid (popped and not discarded).
• discard(M) -- Explicitly discard message M. Messages are implicitly discarded on state exit

after a message receive operation completes.
4 Add state transition lines and specify transition conditions or events on those lines.

• Use conditions when you want to transition based on a conditional statement or a change of
input value from a Simulink block. For more information, see “Transition Between Operating
Modes” (Stateflow).

• Use events when you want to transition based on a Simulink triggered or function-call input
event. For more information, see “Synchronize Model Components by Broadcasting Events”
(Stateflow).

5 Define data that stores state variables.
6 Connect the chart message-line inputs and outputs to Simulink root inports and outports.

For more information, see “Messages” (Stateflow).

In the context of a Stateflow chart, you can modify message properties, such as data type and queue
capacity. (For a list of properties, see “Set Properties for a Message” (Stateflow).) You can access
message properties in the Property Inspector, a Message properties dialog box, or Model Explorer. To
view or modify message properties with the Property Inspector:

1 Open a chart that uses messages.
2 In the Modeling tab, open Symbols Pane and Property Inspector.
3 In the Symbols view, select a message. The Property Inspector displays panes for Message Data

Properties and Advanced properties.

If the chart is in a receiver component, the Property Inspector also displays Message Queue
Properties. To configure the receiver component to use external AUTOSAR RTE message
queues, make sure that property Use internal queue is cleared.

4 AUTOSAR Component Development

4-126

4

By default, message data type and queue capacity values are inherited from the Stateflow message to
which a Simulink root port is attached. Message data can use these Simulink parameter data types:
int types, uint types, floating-point types, boolean, Enum, or Bus (struct).

If you use imported bus or enumeration data types in Stateflow charts, typedefs are required for
simulation. To generate typedefs automatically, select the Simulink configuration option Generate
typedefs for imported bus and enumeration types. Otherwise, use Simulink configuration
parameter Simulation Target > Custom Code > Header file to include header files with the
definitions.

For sample implementations of queued sender and receiver components in a 1-to-1 configuration, see
the example component models used in both “Configure AUTOSAR Sender and Receiver Components
for Queued Communication” on page 4-113 and “Configure Simulation of AUTOSAR Queued Sender-
Receiver Communication” on page 4-118. Models mAutosarSenderSWC1.slx and
mAutosarReceiverSWC.slx are located in the folder matlabroot/help/toolbox/autosar/
examples (cd to folder).

This figure shows the top level of AUTOSAR queued sender component mAutosarSenderSWC1,
which contains Stateflow chart Turn Signal Generator. The chart message-line output is
connected to Simulink root outport MsgOut.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-127

This figure shows the logic implemented in the Turn Signal Generator chart. The chart has four
states – ActivateLeft, DeactivateLeft, ActivateRight, and DeactivateRight. Each state
contains entry actions that assign a value to message data and send a message. (See “Communicate
with Stateflow Charts by Sending Messages” (Stateflow).) Periodic timing drives the message output.

This figure shows the top level of AUTOSAR queued receiver component mAutosarReceiverSWC,
which contains Stateflow chart HMILogic. The chart message-line input is connected to Simulink
root inport MsgIn.

4 AUTOSAR Component Development

4-128

To receive a message, queued receiver logic uses receive(M):

• If a valid message M exists, receive(M) returns true.
• If a valid message does not exist, the chart removes a message from its associated queue, and

receive(M) returns true. If receive(M) removes a message from the queue, the length of the
queue drops by one.

• If message M is invalid, and another message could not be removed from the queue, receive(M)
returns false.

You can place receive on a transition (for example, [receive(M)]. Or, within a state, use an if
condition (for example, if(receive(M))). For more information, see “Communicate with Stateflow
Charts by Sending Messages” (Stateflow).

This figure shows the logic implemented in the HMILogic chart. HMILogic contains states
HMIRequestProcessing, LeftTurnSignal, and RightTurnSignal.

• HMIRequestProcessing receives a message from the message queue, calls a function to process
the message, and then discards the message. The processRequest function tests the received
message data for values potentially set by the message sender -- LeftTurnOn, RightTurnOn,
LeftTurnOff, or RightTurnOff. Based on the value received, the function increments or
decrements a request counter variable, either leftTurnReqs or rightTurnReqs. Periodic
timing drives the message input.

• LeftTurnSignal and RightTurnSignal each contain states Off and On. They transition from
Off to On based on the value of request counter leftTurnReqs or rightTurnReqs and a time
interval. When the request counter is greater than zero, the charts set a variable, either
leftSignalOut or rightSignalOut, to 1. After a time interval, they transition back to the Off
state and set leftSignalOut or rightSignalOut to 0.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-129

For sample implementations of queued sender and receiver components in an N-to-1 configuration,
see the example models used in “Simulate N-to-1 AUTOSAR Queued Sender-Receiver
Communication” on page 4-119.

For sample implementations of event-driven queued messaging, see the example models used in
“Simulate Event-Driven AUTOSAR Queued Sender-Receiver Communication” on page 4-121.

Configure Simulation of AUTOSAR Queued Sender-Receiver Communication

To simulate AUTOSAR queued sender-receiver communication in Simulink, create a containing
composition, system, or harness model. Include the queued sender and receiver components as
referenced models.

• If you have one sender component and one receiver component, you potentially can connect the
models directly. This example directly connects sender and receiver component models.

• If you are simulating N-to-1 or event-driven messaging, you provide additional logic between
sender and receiver component models. For example, see “Simulate N-to-1 AUTOSAR Queued
Sender-Receiver Communication” on page 4-119 and “Simulate Event-Driven AUTOSAR Queued
Sender-Receiver Communication” on page 4-121.

4 AUTOSAR Component Development

4-130

This example shows a composition-level model that contains queued sender and receiver component
models and implements 1-to-1 communication. Periodic timing drives the messaging. The example
uses three models in the folder matlabroot/help/toolbox/autosar/examples (cd to folder). If
you copy the files to a working folder, collocate the models.

• mAutosarQueuedMsgs_1_1.slx (top model)
• mAutosarSenderSWC1.slx
• mAutosarReceiverSWC.slx

Models mAutosarSenderSWC1 and mAutosarReceiverSWC are the same sender and receiver
components configured in “Configure AUTOSAR Sender and Receiver Components for Queued
Communication” on page 4-113 and implemented in “Implement AUTOSAR Queued Send and Receive
Messaging” on page 4-115. Composition-level model mAutosarQueuedMsgs_1_1 includes them as
referenced models and connects sender component port MsgOut to receiver component port MsgIn.

The top model mAutosarQueuedMsgs_1_1 is for simulation only. You can generate AUTOSAR C code
and ARXML files for the sender and receiver component models, but not for the containing
composition-level model.

Similarly, you can run software-in-the-loop (SIL) simulation for the sender and receiver component
models, but not for the composition-level model.

Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication

This example shows a composition-level model that contains two sender and one receiver component
models, and implements N-to-1 communication. Periodic timing drives the messaging. The example
extends the 1-to-1 example by adding a second sender model and providing flow logic between the
senders and receiver.

This example uses four models in the folder matlabroot/help/toolbox/autosar/examples (cd
to folder). If you copy the files to a working folder, collocate the models.

• mAutosarQueuedMsgs_N_1.slx (top model)
• mAutosarSenderSWC1.slx
• mAutosarSenderSWC2.slx

 Configure AUTOSAR Queued Sender-Receiver Communication

4-131

• mAutosarReceiverSWC.slx

Composition-level model mAutosarQueuedMsgs_N_1 includes two sender components and a
receiver component as referenced models. It connects the sender component MsgOut ports to
intermediate MsgJoin processing logic, which in turn connects to a receiver component MsgIn port.

Models mAutosarSenderSWC1 and mAutosarReceiverSWC are the same sender and receiver
components configured in “Configure AUTOSAR Sender and Receiver Components for Queued
Communication” on page 4-113 and implemented in “Implement AUTOSAR Queued Send and Receive
Messaging” on page 4-115. The second sender component, mAutosarSenderSWC2, is similar to
mAutosarSenderSWC1, but implements a second type of message input for the receiver to process.

This figure shows the top level of AUTOSAR queued sender component mAutosarSenderSWC2,
which contains Stateflow chart Hazard Signal Generator. The chart message-line output is
connected to Simulink root outport MsgOut.

This figure shows the logic implemented in the Hazard Signal Generator chart. The chart has
two states – HazardOff and HazardOn. Each state contains entry actions that assign values to
message data and send messages. (See “Communicate with Stateflow Charts by Sending Messages”
(Stateflow).) Periodic timing drives the message output.

4 AUTOSAR Component Development

4-132

This figure shows the MsgJoin chart located between the sender and receiver components.

This figure shows the logic implemented in the MsgJoin chart. The chart receives queued messages
from both sender components and outputs them, one at a time, to the receiver component. Messages
from the first sender component, mAutosarSenderSWC1.slx, are processed first. For each message
received, the chart copies the received message data to the outbound message, sends the data, and
discards the received message. (See “Communicate with Stateflow Charts by Sending Messages”
(Stateflow).)

The top model mAutosarQueuedMsgs_N_1 is for simulation only. You can generate AUTOSAR C code
and ARXML files for the referenced sender and receiver component models, but not for the
containing composition-level model.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-133

Similarly, you can run software-in-the-loop (SIL) simulation for the sender and receiver component
models, but not for the composition-level model.

Determine When a Queue Overflows

To check whether a message is lost because it was sent to a queue that was already full, use the
Stateflow overflowed operator:

overflowed(message_name)

To use the overflowed operator, set the model to an autosar.tlc target for both simulation and
code generation and verify that the inport or outport message connects to an external queue. In each
time step, the value of this operator is set when a chart adds a message to, or removes a message
from, a queue. It is invalid to use the overflowed operator before sending or retrieving a message in
the same time step or to check the overflow status of a local message queue.

By default, when a message queue overflows, simulation stops with an error. To prevent a run-time
error and allow the overflowed operator to dynamically react to dropped messages, set the value of
the Queue Overflow Diagnostic property to Warning or None. For more information, see “Queue
Overflow Diagnostic” (Stateflow).

Check for Input Message Overflow

To check the overflow status of an input message queue, first remove a message from the queue. You
can:

• Guard a transition with the message and the overflowed operator.

• Guard a transition with the message and call the overflowed operator in the entry action of the
destination state.

• Guard a state on action with the message and call the overflowed operator in the action.

4 AUTOSAR Component Development

4-134

• In a state action, use the receive operator followed by the overflowed operator.

Calling the overflowed operator before retrieving an input message in the same time step results in
a run-time error.

Check for Output Message Overflow

To check the overflow status of an output message queue, first add a message to the queue. You can:

• Use the send operator followed by the overflowed operator.

• Use the forward operator followed by the overflowed operator.

Calling the overflowed operator before sending or forwarding an output message in the same time
step results in a run-time error.

 Configure AUTOSAR Queued Sender-Receiver Communication

4-135

See Also
overflowed

More About
• “Simulink Messages Overview”
• “Messages” (Stateflow)
• “AUTOSAR Communication”
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-136

Configure AUTOSAR Ports By Using Simulink Bus Ports
In classic and adaptive AUTOSAR software components, you can model AUTOSAR ports by using
root-level Simulink bus ports instead of Inport and Outport blocks. Bus port blocks In Bus Element
and Out Bus Element can simplify model interfaces. For more information, see “Simplify Subsystem
and Model Interfaces with Bus Element Ports”.

Bus port blocks provide a more intuitive way to model AUTOSAR communication ports, interfaces,
and groups of data elements. If you model AUTOSAR ports with In Bus Element and Out Bus Element
blocks, and type the bus ports by using bus objects, basic properties of AUTOSAR ports, interfaces,
and data elements are configured without using the AUTOSAR Dictionary. To manage component
interfaces, you configure Simulink bus objects.

You can use root-level bus ports with:

• AUTOSAR software components that use rate-based or export-function modeling styles.
• AUTOSAR signal-based communication.
• AUTOSAR message-based communication, including classic queued sender-receiver (S-R) or

adaptive event-based messaging.

In AUTOSAR architecture models, you can link Classic Platform component models that have bus
ports and then use the Schedule Editor to schedule the simulation.

In this section...
“Model AUTOSAR Ports By Configuring Simulink Bus Ports” on page 4-137
“Model AUTOSAR Interfaces By Typing Bus Ports with Bus Objects” on page 4-139

Model AUTOSAR Ports By Configuring Simulink Bus Ports
To configure Simulink bus ports in an AUTOSAR model:

1 Create or open an AUTOSAR software component model. The examples in this topic use a
writable copy of the example model autosar_swc.

For reference, the example model matlabroot/help/toolbox/autosar/examples/
mAutosarSwcBusPorts.slx shows the end result of these procedures.

2 Add two In Bus Element blocks to the model and connect them as root input ports. Configure the
bus ports to share the same AUTOSAR port but have different elements. The bus port blocks are
automatically mapped to AUTOSAR ports and elements.

a Delete the existing Inport blocks in the model.
b Create an In Bus Element block. Open the block parameters dialog box. Set Port name to

ReceivePort and the signal name to In1.
c Connect the block to the first input signal. Make a copy of the block and connect it to the

second input signal. In the model canvas (not the block parameters dialog box), click the
name of the second block and change In1 to In2.

 Configure AUTOSAR Ports By Using Simulink Bus Ports

4-137

d The In Bus Element block parameters dialog box now lists both signals.

Edit each signal and set the Sample time to 1 and 2, respectively.
3 Add two Out Bus Element blocks to the model and connect them as root output ports. Configure

the bus ports to share the same AUTOSAR port but have different elements. The bus port blocks
are automatically mapped to AUTOSAR ports and elements.

a Delete the existing Outport blocks in the model.
b Create an Out Bus Element block. Open the block parameters dialog box. Set Port name to

SenderPort and the signal name to Out1.
c Connect the block to the first output signal. Make a copy of the block and connect it to the

second input signal. In this case, the signal name is automatically set to Out2.

4 AUTOSAR Component Development

4-138

The Out Bus Element block parameters dialog box now lists both signals.
4 From the Apps tab, open the AUTOSAR Component Designer app.

• Use the Code Mappings editor to verify that the rate-based functions are correctly mapped to
AUTOSAR runnables.

Verify that the bus ports are correctly mapped to AUTOSAR ports.

Examine the AUTOSAR data access mode selected for each port. The reference model
mAutosarSwcBusPorts specifies implicit receive and send data access to match the original
settings for autosar_swc.

• Optionally, open the AUTOSAR Dictionary and view the AUTOSAR component ports,
runnables, S-R interfaces, and data elements.

5 If you generate code for the model:

• The generated ARXML file autosar_swc_component.arxml describes periodic runnables
for each sample rate, named Runnable_1s and Runnable_2s.

• The generated code file autosar_swc.c defines the rate-based functions Runnable_1s and
Runnable_2s.

Model AUTOSAR Interfaces By Typing Bus Ports with Bus Objects
To define an AUTOSAR interface, type a bus port with a bus object. This example uses the same
AUTOSAR software component model that was modified in the previous example. The example
replaces the sender interface Output_If in autosar_swc with a new interface named
SenderInterface.

1 With the modified autosar_swc open, open the Type Editor. On the Modeling tab, in the
Design gallery, select Type Editor.

2 In the Type Editor, add a Simulink.Bus object and name it SenderInterface. Add two
Simulink.BusElement objects and name them Out1 and Out2.

Optionally, before you exit the dialog, save the SenderInterface bus object to a MAT file for
later use. The example model mAutosarSwcBusPorts does not load a MAT file. Instead, it uses
a PreLoadFcn model callback to programmatically create the SenderInterface bus object.

3 Open the SenderPort block dialog box. Pause on the bus object named SenderPort and click
the button that appears. Set the Data type of the bus object to Bus: SenderInterface.

 Configure AUTOSAR Ports By Using Simulink Bus Ports

4-139

4 Because the new interface is replacing an existing mapped interface, you must explicitly delete
the existing sender port and sender interface. Open the AUTOSAR Component Designer app and
open AUTOSAR Dictionary. Select and delete sender port SenderPort and S-R interface
Output_If.

5 To generate and map the new sender interface, either call function autosar.api.create to
update the model mapping or press Ctrl+B to generate model code (requires Embedded Coder).
Here is the autosar.api.create function call.
autosar.api.create('autosar_swc');

6 Optionally, open the AUTOSAR Dictionary and view the new sender port and S-R interface
definitions.

For reference, the example model matlabroot/help/toolbox/autosar/examples/
mAutosarSwcBusPorts.slx shows the end result of these procedures.

See Also
In Bus Element | Out Bus Element | autosar.api.create

4 AUTOSAR Component Development

4-140

Related Examples
• “Model AUTOSAR Communication” on page 2-22
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21

More About
• “Simplify Subsystem and Model Interfaces with Bus Element Ports”

 Configure AUTOSAR Ports By Using Simulink Bus Ports

4-141

Configure AUTOSAR Client-Server Communication
In Simulink, you can model AUTOSAR client-server communication for simulation and code
generation. For information about the Simulink blocks you use and the high-level workflow, see
“Client-Server Interface” on page 2-25.

To model AUTOSAR servers and clients, you can do either or both of the following:

• Import AUTOSAR servers and clients from ARXML code into a model.
• Configure AUTOSAR servers and clients from Simulink blocks.

This topic provides examples of AUTOSAR server and client configuration that start from Simulink
blocks.

In this section...
“Configure AUTOSAR Server” on page 4-142
“Configure AUTOSAR Client” on page 4-150
“Configure AUTOSAR Client-Server Error Handling” on page 4-156
“Concurrency Constraints for AUTOSAR Server Runnables” on page 4-159
“Configure and Map AUTOSAR Server and Client Programmatically” on page 4-161

Configure AUTOSAR Server
This example shows how to configure a Simulink Function block as an AUTOSAR server. The example
uses these files in the folder matlabroot/help/toolbox/autosar/examples (cd to folder):

• mControllerWithInterface_server.slx
• ExampleApplicationErrorType.m

If you copy the files to a working folder, collocate the MATLAB file with the model file.

1 Open a model in which you want to create and configure an AUTOSAR server, or open the
example model mControllerWithInterface_server.slx.

2 Add a Simulink Function block to the model. The example model provides two Simulink Function
blocks, doOverride and readData.

4 AUTOSAR Component Development

4-142

3 Configure the Simulink Function block to implement a server function. Configure a function
prototype and implement the server function algorithm.

In the example model, the contents of the Simulink Function block named readData implement
a server function named readData.

The contents include:

• Trigger block readData, representing a trigger port for the server function. In the Trigger
block properties, Trigger type is set to function-call. Also, the option Treat as Simulink
function is selected.

• Argument Inport block Op and Argument Outport blocks Data, ERR, and NegCode,
corresponding to the function prototype [Data,ERR,NegCode]=readData(Op).

Note When configuring server function arguments, you must specify signal data type, port
dimensions, and signal type on the Signal Attributes tab of the inport and outport blocks.
The AUTOSAR configuration fails validation if signal attributes are absent for server function
arguments.

 Configure AUTOSAR Client-Server Communication

4-143

• Blocks implementing the readData function algorithm. In this example, a few simple blocks
provide Data, ERR, and NegCode output values with minimal manipulation. A Constant block
represents the value of an application error defined for the server function. The value of Op
passed by the caller is ignored. In a real-world application, the algorithm could perform a
more complex manipulation, for example, selecting an execution path based on the passed
value of Op, producing output data required by the application, and checking for error
conditions.

4 When the server function is working in Simulink, set up the Simulink Function block in a model
configured for AUTOSAR. For example, configure the current model for AUTOSAR or copy the
block into an AUTOSAR model.

The example model is an AUTOSAR model, into which the Simulink Function block readData
has been copied. In place of a meaningful Op input value for the readData function, Simulink
data transfer line CurVal provides an input value that is used in the function algorithm.

4 AUTOSAR Component Development

4-144

5 The required elements to configure an AUTOSAR server, in the general order they are created,
are:

• AUTOSAR client-server (C-S) interface
• One or more AUTOSAR operations for which the C-S interface handles client requests
• AUTOSAR server port to receive client requests for a server operation
• For each server operation, an AUTOSAR server runnable to execute client requests

Open the AUTOSAR Dictionary. To view AUTOSAR C-S interfaces in the model, go to the C-S
Interfaces view. The example model already contains client-server interfaces.

If a C-S interface does not yet exist in your model, create one.

a
In the C-S interfaces view, click the Add button . This action opens the Add Interfaces
dialog box.

b In the dialog box, name the new C-S Interface, and specify the number of operations you
intend to associate with the interface. Leave other parameters at their defaults. Click Add.
The new interface appears in the C-S interfaces view.

 Configure AUTOSAR Client-Server Communication

4-145

6 Under C-S Interfaces, create one or more AUTOSAR server operations for which the C-S
interface handles client requests. Each operation corresponds to a Simulink server function in
the model.

Expand C-S Interfaces and expand the individual C-S interface to which you want to add a
server operation. (In the example model, expand CsIf1.) To view operations for the interface,
select Operations. The example model already contains AUTOSAR server operations named
doOverride and readData.

If a server operation does not yet exist in your model, create one. (If your C-S interface contains
a placeholder operation named Operation1, you can safely delete it.)

a
In the operations view, click the Add button . This action opens the Add Operation dialog
box.

b In the dialog box, enter the Operation Name. Specify the name of the corresponding
Simulink server function.

c If the corresponding Simulink server function has arguments, select the function in the
Simulink Function list. This action causes AUTOSAR operation arguments to be
automatically created based on the Simulink server function arguments. Click OK. The
operation and its arguments appear in the operations view.

4 AUTOSAR Component Development

4-146

7 Examine the arguments listed for the AUTOSAR server operation. Expand Operations, expand
the individual operation (for example, readData), and select Arguments. The listed arguments
correspond to the Simulink server function prototype.

8 To view AUTOSAR server ports in the model, go to the server ports view. Expand
AtomicComponents, expand the individual component that you are configuring, and select
ServerPorts. The example model already contains an AUTOSAR server port named sPort.

 Configure AUTOSAR Client-Server Communication

4-147

If a server port does not yet exist in your model, create one.

a
In the server ports view, click the Add button . This action opens the Add Ports dialog
box.

b In the dialog box, name the new server port, and select the C-S interface for which you
configured a server operation. Click Add. The new port appears in the server ports view.

9 For each AUTOSAR server operation, configure an AUTOSAR server runnable to execute client
requests. To view AUTOSAR runnables in the model, select Runnables. The example model
already contains a server runnable for readData, named Runnable_readData.

If a suitable server runnable does not yet exist in your model, create one.

a
In the runnables view, click the Add button . This action adds a table entry for a new
runnable.

b Select the new runnable and configure its name and symbol. The symbol name specified for
the runnable must match the Simulink server function name. (In the example model, the
symbol name for Runnable_readData is the function name readData.)

c Create an operation-invoked event to trigger the server runnable. (The example model
defines event event_readData for server runnable Runnable_readData.)

i Under Events, click Add Event. Select the new event.
ii For Event Type, select OperationInvokedEvent.
iii Enter the Event Name.
iv Under Event Properties, select a Trigger value that corresponds to the server port and

C-S operation previously created for the server function. (In the example model, the
Trigger value selected for Runnable_readData is sPort.readData, combining
server port sPort with operation readData.) Click Apply.

4 AUTOSAR Component Development

4-148

This step completes the configuration of an AUTOSAR server in the AUTOSAR Dictionary view of
the configuration.

10 Switch to the Code Mappings editor view of the configuration and map the Simulink server
function to the AUTOSAR server runnable.

a Open the Code Mappings editor. Select the Functions tab.
b Select the Simulink server function. To map the function to an AUTOSAR runnable, click on

the Runnable field and select the corresponding runnable from the list of available server
runnables. In the example model, the Simulink function readData is mapped to AUTOSAR
runnable Runnable_readData.

11 To validate the AUTOSAR component configuration, click the Validate button . If errors are
reported, fix the errors, and retry validation. Repeat until validation succeeds.

12 Generate C and ARXML code for the model.

 Configure AUTOSAR Client-Server Communication

4-149

After you configure an AUTOSAR server, configure a corresponding AUTOSAR client invocation, as
described in “Configure AUTOSAR Client” on page 4-150.

Configure AUTOSAR Client
After you configure an AUTOSAR server, as described in “Configure AUTOSAR Server” on page 4-
142, configure a corresponding AUTOSAR client invocation. This example shows how to configure a
Function Caller block as an AUTOSAR client invocation. The example uses the file matlabroot/
help/toolbox/autosar/examples/mControllerWithInterface_client.slx.

1 Open a model in which you want to create and configure an AUTOSAR client, or open the
example model mControllerWithInterface_client.slx.

2 Add a Function Caller block to the model. The example model provides a Simulink Function block
named readData, which is located inside Runnable3_Subsystem.

3 Configure the Function Caller block to call a corresponding Simulink Function block. Double-
click the block to open it, and edit the block parameters to specify the server function prototype.

In the example model, the readData Function Caller parameters specify a function prototype for
the readData server function used in the AUTOSAR server example, “Configure AUTOSAR
Server” on page 4-142. Here is the readData function from the server example.

The Function Caller parameters include function prototype and argument specification fields.
The function name in the prototype must match the Operation Name specified for the
corresponding server operation. See the operation creation step in “Configure AUTOSAR Server”
on page 4-142. The argument types and dimensions also must match the server function
arguments.

4 AUTOSAR Component Development

4-150

Note If you want to simulate the function invocation at this point, you must place the Function
Caller block in a common model or test harness with the corresponding Simulink Function block.
Simulation is not required for this example.

4 When the function invocation is completely formed in Simulink, set up the Function Caller block
in a model configured for AUTOSAR. For example, configure the current model for AUTOSAR or
copy the block into an AUTOSAR model.

Tip If you create (or copy) a Function Caller block in a model before you map and configure the
AUTOSAR component, you have the option of having the software populate the AUTOSAR
operation arguments for you, rather than creating the arguments manually. To have the
arguments created for you, along with a fully-configured AUTOSAR client port and a fully
mapped Simulink function caller, use the AUTOSAR Component Quick Start to create a default
component. For more information, see “Create AUTOSAR Software Component in Simulink” on
page 3-2.

The example model is an AUTOSAR model, into which the Function Caller block readData has
been copied. The block is connected to inports, outports, and signal lines matching the function
argument data types and dimensions.

 Configure AUTOSAR Client-Server Communication

4-151

Note Whenever you add or change a Function Caller block in an AUTOSAR model, update
function callers in the AUTOSAR configuration. Open the Code Mappings editor. In the dialog
box, click the Update button . This action loads or updates Simulink data transfers, function
callers, and numeric types in your model. After updating, the function caller you added appears
in the Function Callers tab of the Code Mappings editor.

5 The required elements to configure an AUTOSAR client, in the general order they should be
created, are:

• AUTOSAR client-server (C-S) interface
• One or more AUTOSAR operations matching the Simulink server functions that you defined in

the AUTOSAR server model
• AUTOSAR client port to receive client requests for a server operation offered by the C-S

interface

Open the AUTOSAR Dictionary. To view AUTOSAR C-S interfaces in the model, go to the C-S
Interfaces view. The example model already contains a client-server interface named
csInterface.

If a C-S interface does not yet exist in the AUTOSAR configuration, create one.

a
In the C-S interfaces view, click the Add button . This action opens the Add Interfaces
dialog box.

b In the dialog box, name the new C-S Interface, and specify the number of operations you
intend to associate with the interface. Leave other parameters at their defaults. Click Add.
The new interface appears in the C-S interfaces view.

4 AUTOSAR Component Development

4-152

6 Under C-S Interfaces, create one or more AUTOSAR operations matching the Simulink server
functions that you defined in the AUTOSAR server model.

Expand C-S Interfaces and expand the individual C-S interface to which you want to add an
AUTOSAR operation. (In the example model, expand CsInterface.) To view operations for the
interface, select Operations. The example model already contains an AUTOSAR operation
named readData.

If an AUTOSAR operation does not yet exist in your model, create one. (If your C-S interface
contains a placeholder operation named Operation1, you can safely delete it.)

a
In the operations view, click the Add button . This action opens the Add Operation dialog
box.

b In the dialog box, enter the Operation Name. Specify the name of the corresponding
Simulink server function. Leave Simulink Function set to None, because the client model
does not contain the Simulink server function block. Click OK. The new operation appears in
the operations view.

 Configure AUTOSAR Client-Server Communication

4-153

7 Add the AUTOSAR operation arguments.

a Expand Operations, expand the individual operation (for example, readData), and select
Arguments.

b
In the arguments view, click the Add button one time for each function argument. For
example, for readData, click the Add button four times, for arguments Op, Data, ERR, and
NegCode. Each click creates one new argument entry.

c Select each argument entry and set the argument Name and Direction to match the
function prototype.

8 To view AUTOSAR client ports in the model, go to the client ports view. Expand
AtomicComponents, expand the individual component that you are configuring, and select
ClientPorts. The example model already contains an AUTOSAR client port named cPort.

4 AUTOSAR Component Development

4-154

If a client port does not yet exist in your model, create one.

a
In the client ports view, click the Add button . This action opens the Add Ports dialog
box.

b In the dialog box, name the new client port, and select a C-S interface. Click Add. The new
port appears in the client ports view.

This step completes the configuration of an AUTOSAR client in the AUTOSAR Dictionary view of
the configuration.

9 Switch to the Code Mappings editor view of the configuration and map the Simulink function
caller to an AUTOSAR client port and C-S operation.

a Open the Code Mappings editor. Select the Function Callers tab.
b Select the Simulink function caller. Click on the ClientPort field and select a port from the

list of available AUTOSAR client ports. Click on the Operation field and select an operation
from the list of available AUTOSAR C-S operations. In the example model, the Simulink
function caller readData is mapped to AUTOSAR client port cPort and C-S operation
readData.

10 To validate the AUTOSAR component configuration, click the Validate button . If errors are
reported, fix the errors, and retry validation. Repeat until validation succeeds.

 Configure AUTOSAR Client-Server Communication

4-155

11 Generate C and ARXML code for the model.

Configure AUTOSAR Client-Server Error Handling
AUTOSAR defines an application error status mechanism for client-server error handling. An
AUTOSAR server returns error status, with a value matching a predefined possible error. An
AUTOSAR client receives and responds to the error status. An AUTOSAR software component that
follows client-server error handling guidelines potentially provides error status to AUTOSAR Basic
Software, such as a Diagnostic Event Manager (DEM).

In Simulink, you can:

• Import ARXML code that implements client-server error handling.
• Configure error handling for a client-server interface.
• Generate C and ARXML code for client-server error handling.

If you import ARXML code that implements client-server error handling, the importer creates error
status ports at the corresponding server call-point (Function Caller block) locations.

To implement AUTOSAR client-server error handling in Simulink:

1 Define the possible error status values that the AUTOSAR server returns in a Simulink data type.
Define one or more error codes in the range 0-63, inclusive. The underlying storage of the data
type must be an unsigned 8-bit integer. The data scope must be Exported. For example, define
an enumeration type appErrType:
classdef(Enumeration) appErrType < uint8

 enumeration
 SUCCESS(0)
 ERROR(1)
 COMM_MODE_LIMITATION(2)
 OVERFLOW(3)
 UNDERFLOW(4)
 VALUE_MOD3(5)
 end

 methods (Static = true)
 function descr = getDescription()
 descr = 'Definition of application error type.';
 end

 function hdrFile = getHeaderFile()
 hdrFile = '';
 end

 function retVal = addClassNameToEnumNames()
 retVal = false;
 end

 function dataScope = getDataScope()
 dataScope = 'Exported';
 end
 end

end

Note The Simulink data type that you define to represent possible errors in the model does not
directly impact the AUTOSAR possible errors that are imported and exported in ARXML code. To
modify the exported possible errors for a C-S interface or C-S operation, use AUTOSAR
properties functions. This topic provides examples.

4 AUTOSAR Component Development

4-156

2 Define an error status output argument for the Simulink Function block that models the
AUTOSAR server. Configure the error status argument as the only function output or add it to
other outputs. For example, here is a Simulink Function block that returns an error status value
in output err.

The Simulink Function block implements an algorithm to return error status.

3 Reference the possible error values type in the model. In the Argument Outport block parameters
for the error outport, specify the error status data type, in this case, appErrType. Set Port
dimensions to 1 and Signal type to real.

4 Configure the AUTOSAR properties of the error argument in the client-server interface. Open the
AUTOSAR Dictionary, expand C-S Interfaces, and navigate to the Arguments view of the

AUTOSAR operation. To add an argument, click the Add button . Configure the argument
name and set Direction to Error.

 Configure AUTOSAR Client-Server Communication

4-157

5 Create an error port in each Function Caller block that models an AUTOSAR client invocation.
For example, here is a Function Caller block that models an invocation of fcnWErr.

In the Function Caller block parameters, specify the same error status data type.

Configure the AUTOSAR properties of the error argument to match the information in the
AUTOSAR Dictionary, Arguments view, shown in Step 4.

The generated C code for the function reflects the configured function signature and the logic defined
in the model for handling the possible errors.
appErrType fcnWErr(real_T x1, real_T x2)
{
 appErrType rty_err_0;
 if (...) == 0.0) {
 rty_err_0 = ...;
 } else {
 rty_err_0 = ...;
 }

 return rty_err_0;
}

Additionally, for the enumeration type class definition used in this example, the build generates
header file appErrType.h, containing the possible error type definitions.

4 AUTOSAR Component Development

4-158

The exported ARXML code contains the possible error definitions, and references to them.
<POSSIBLE-ERRORS>
 <APPLICATION-ERROR …>
 <SHORT-NAME>SUCCESS</SHORT-NAME>
 <ERROR-CODE>0</ERROR-CODE>
 </APPLICATION-ERROR>
 <APPLICATION-ERROR …>
 <SHORT-NAME>ERROR</SHORT-NAME>
 <ERROR-CODE>1</ERROR-CODE>
 </APPLICATION-ERROR>
 …
 <APPLICATION-ERROR …>
 <SHORT-NAME>UNDERFLOW</SHORT-NAME>
 <ERROR-CODE>4</ERROR-CODE>
 </APPLICATION-ERROR>
 <APPLICATION-ERROR …>
 <SHORT-NAME>VALUE_MOD3</SHORT-NAME>
 <ERROR-CODE>5</ERROR-CODE>
 </APPLICATION-ERROR>
</POSSIBLE-ERRORS>

You can use AUTOSAR property functions to programmatically modify the possible errors that are
exported in ARXML code, and to set the Direction property of a C-S operation argument to Error.

The following example adds UNDERFLOW and VALUE_MOD3 to the possible errors for a C-S
interface named fcnWErr.
>> arProps = autosar.api.getAUTOSARProperties(bdroot)
>> get(arProps,'fcnWErr','PossibleError')
ans =
 'fcnWErr/SUCCESS' 'fcnWErr/ERROR' 'fcnWErr/COMM_MODE…'
 'fcnWErr/OVERFLOW'
>> get(arProps,'fcnWErr/OVERFLOW','errorCode')
ans =
 3
>> add(arProps,'fcnWErr','PossibleError','UNDERFLOW')
>> set(arProps,'fcnWErr/UNDERFLOW','errorCode',4)
>> add(arProps,'fcnWErr','PossibleError','VALUE_MOD3')
>> set(arProps,'fcnWErr/VALUE_MOD3','errorCode',5)
>> get(arProps,'fcnWErr','PossibleError')
ans =
 'fcnWErr/SUCCESS' 'fcnWErr/ERROR' 'fcnWErr/COMM_MODE…'
 'fcnWErr/OVERFLOW' 'fcnWErr/UNDERFLOW' 'fcnWErr/VALUE_MOD3'

You can also access possible errors on a C-S operation. The following example lists possible errors for
operation fcnWErr on C-S interface fcnWErr.
>> arProps = autosar.api.getAUTOSARProperties(bdroot)
>> get(arProps,'fcnWErr/fcnWErr','PossibleError')
ans =
 'fcnWErr/SUCCESS' 'fcnWErr/ERROR' 'fcnWErr/COMM_MODE…'
 'fcnWErr/OVERFLOW'

The following example sets the direction of C-S operation argument err to Error.
>> arProps = autosar.api.getAUTOSARProperties(bdroot)
>> set(arProps,'fcnWErr/fcnWErr/err','Direction','Error')
>> get(arProps,'fcnWErr/fcnWErr/err','Direction')
ans =
 Error

Concurrency Constraints for AUTOSAR Server Runnables
The following blocks and modeling patterns are incompatible with concurrent execution of an
AUTOSAR server runnable.

 Configure AUTOSAR Client-Server Communication

4-159

• Blocks inside a Simulink function:

• Blocks with state, such as Unit Delay.
• Blocks with zero-crossing logic, such as Triggered Subsystem and Enabled Subsystem.
• Stateflow charts.
• Other Simulink Function blocks.
• Noninlined subsystems.
• Legacy C function calls with side effects.

• Modeling patterns inside a Simulink function:

• Writing to a data store memory (for example, per-instance-memory).
• Writing to a global block signal (for example, static memory).

To enforce concurrency constraints for AUTOSAR server runnables, use the runnable property
canBeInvokedConcurrently. The property is located in the Runnables view in the AUTOSAR
Dictionary.

When canBeInvokedConcurrently is set to true for a server runnable, AUTOSAR validation
checks for blocks and modeling patterns that are incompatible with concurrent execution of a server
runnable. If a Simulink function contains an incompatible block or modeling pattern, validation
reports errors. If canBeInvokedConcurrently is set to false, validation does not check for blocks
and modeling patterns that are incompatible with concurrent execution of a server runnable.

You can set canBeInvokedConcurrently to true only for an AUTOSAR server runnable — that is,
a runnable with an OperationInvokedEvent. The property canBeInvokedConcurrently is not
supported for runnables with other event triggers, such as timing events. If
canBeInvokedConcurrently is set to true for a nonserver runnable, AUTOSAR validation fails.

To programmatically set the runnable property canBeInvokedConcurrently, use the AUTOSAR
property function set. The following example sets the runnable property
canBeInvokedConcurrently to true for an AUTOSAR server runnable named
Runnable_readData.
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
open_system('mControllerWithInterface_server')

4 AUTOSAR Component Development

4-160

arProps = autosar.api.getAUTOSARProperties('mControllerWithInterface_server');
SRPath = find(arProps,[],'Runnable','Name','Runnable_readData')

SRPath =
 1×1 cell array
 {'SWC_Controller/ControllerWithInterface_ar/Runnable_readData'}

invConc = get(arProps,'SWC_Controller/ControllerWithInterface_ar/Runnable_readData',...
 'canBeInvokedConcurrently')

invConc =
 logical
 0

set(arProps,'SWC_Controller/ControllerWithInterface_ar/Runnable_readData',...
 'canBeInvokedConcurrently',true)
invConc = get(arProps,'SWC_Controller/ControllerWithInterface_ar/Runnable_readData',...
 'canBeInvokedConcurrently')

invConc =
 logical
 1

Configure and Map AUTOSAR Server and Client Programmatically
To programmatically configure AUTOSAR properties of AUTOSAR client-server interfaces, use
AUTOSAR property functions such as set and get.

To programmatically configure Simulink to AUTOSAR mapping information for AUTOSAR clients and
servers, use these functions:

• getFunction
• getFunctionCaller
• mapFunction
• mapFunctionCaller

For example scripts that use AUTOSAR property and map functions, see “Configure AUTOSAR Client-
Server Interfaces” on page 4-312.

See Also
Simulink Function | Function Caller | Trigger | Argument Inport | Argument Outport

Related Examples
• “Client-Server Interface” on page 2-25
• “Configure AUTOSAR Client-Server Interfaces” on page 4-312
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “Model AUTOSAR Communication” on page 2-22
• “AUTOSAR Component Configuration” on page 4-3

 Configure AUTOSAR Client-Server Communication

4-161

Configure AUTOSAR Mode-Switch Communication
AUTOSAR mode-switch (M-S) communication relies on a mode manager and connected mode users.
The mode manager is an authoritative source for software components to query the current mode and
to receive notification when the mode changes (switches). A mode manager can be provided by
AUTOSAR Basic Software (BSW) or implemented as an AUTOSAR software component. A mode
manager implemented as a software component is called an application mode manager. A software
component that queries the mode manager and receives notifications of mode switches is a mode
user.

In this section...
“Configure Mode Receiver Port and Mode-Switch Event for Mode User” on page 4-162
“Configure Mode Sender Port and Mode Switch Point for Application Mode Manager” on page 4-166

Configure Mode Receiver Port and Mode-Switch Event for Mode User

To model a mode user software component, use an AUTOSAR mode receiver port and a mode-switch
event. The mode receiver port uses a mode-switch (M-S) interface to connect and communicate with
a mode manager, which provides notifications of mode changes. You configure a mode-switch event to
respond to a specified mode change by activating an associated runnable. This example shows how to
configure an AUTOSAR mode-receiver port, mode-switch event, and related elements for a mode user.

Note This example does not implement a meaningful algorithm for controlling component execution
based on the current ECU mode.

1 Open a writable copy of the example model autosar_swc_expfcns.
2 Declare a mode declaration group — a group of mode values — using Simulink enumeration.

Specify the storage type as an unsigned integer. Enter the following command in the MATLAB
Command Window:
Simulink.defineIntEnumType('mdgEcuModes', ...
 {'Run', 'Sleep'}, [0;1], ...
 'Description', 'Mode declaration group for ECU modes', ...
 'DefaultValue', 'Run', ...
 'HeaderFile', 'Rte_Type.h', ...
 'AddClassNameToEnumNames', false,...
 'StorageType', 'uint16');

3 Rename the Simulink inport RPort_DE1 (ErrorStatus) to MRPort (ECU mode). For
example, open the Model Data Editor (on the Modeling tab, click Model Data Editor). Use the
Source column to rename the inport. In a later step, you will map this inport to an AUTOSAR
mode-receiver port.

4 AUTOSAR Component Development

4-162

4 Next, apply the mode declaration group mdgEcuModes to the inport. In the Model Data Editor,
for the inport, set Data Type to Enum: mdgEcuModes. Additionally, set Complexity to auto.

5 In the model window, open the function-call subsystem named Runnable1_subsystem and
make the following changes:

a Rename inport ErrorStatus to CurrentMode.
b Replace Constant block RTE_E_OK with an Enumerated Constant block. (The Enumerated

Constant block can be found in the Sources block group.) Double-click the block to open its
block parameters dialog box. Set Output data type to Enum: mdgEcuModes and set Value
to mdgEcuModes.Run. Click OK.

6 Add an AUTOSAR mode-switch interface to the model. Open the AUTOSAR Dictionary. Select M-

S Interfaces. Click the Add button . In the Add Interfaces dialog box, specify Name as
Interface3 and specify ModeGroup as mgEcuMode.

The IsService property of an M-S interface defaults to true. For the purposes of this example,
you can leave IsService at its default setting, unless you have a reason to change it.

Click Add.

 Configure AUTOSAR Mode-Switch Communication

4-163

The value you specify for the AUTOSAR mode group is used in a later step, when you map a
Simulink inport to an AUTOSAR mode-receiver port and element.

7 Add an AUTOSAR mode-receiver port to the model. Expand AtomicComponents, expand
component ASWC, and select ModeReceiverPorts. To open the Add Ports dialog box, click the

Add button . In the Add Ports dialog box, specify Name as MRPort. Interface is already set
to Interface3 (the only available value in this configuration), and Type is already set to
ModeReceiver. Click Add.

8 In the Code Mappings editor, map the Simulink inport MRPort (ECU mode) to the AUTOSAR
mode-receiver port and element. Open the Code Mappings editor and select the Inports tab. In
the row for inport MRPort (ECU mode), set DataAccessMode to ModeReceive, set Port to
MRPort, and set Element to mgEcuMode. (The AUTOSAR element value matches the
ModeGroup value you specified when you added AUTOSAR mode-switch interface
Interface3.)

This step completes the AUTOSAR mode-receiver port configuration. Click the Validate button
 to validate the AUTOSAR component configuration. If errors are reported, address them and

then retry validation. When the model passes validation, save the model.

Note The remaining steps create an AUTOSAR mode-switch event and set it up to trigger
activation of an AUTOSAR runnable. If you intend to use ECU modes to control program
execution, without using an event to activate a runnable, you can skip the remaining steps and
implement the required flow-control logic in your design.

9 To add an AUTOSAR mode-switch event for a runnable:

4 AUTOSAR Component Development

4-164

a Open the AUTOSAR Dictionary. Expand AtomicComponents, expand the ASWC component,
and select Runnables. In the list of runnables, select Runnable1. This selection activates
an Events configuration pane for the runnable.

b To add an event to the list of events for Runnable1, click Add Event. For the new event, set
Event Type to ModeSwitchEvent. (This activates an Event Properties subpane.) Specify
Event Name as Event_Run.

c In the Event Properties subpane, set Mode Activation to OnEntry, set Mode Receiver
Port to MRPort, and set Mode Declaration to Run. Click Apply.

10 Open the Code Mappings editor and select the Functions tab. In this example model, Simulink
entry-point functions have already been mapped to AUTOSAR runnables, including the runnable
Runnable1, to which you just added a mode-switch event.

11 This completes the AUTOSAR mode-switch event configuration. Click the Validate button to
validate the AUTOSAR component configuration. If errors are reported, address them and then

 Configure AUTOSAR Mode-Switch Communication

4-165

retry validation. When the model passes validation, save the model. Optionally, you can generate
XML and C code from the model and inspect the results.

Configure Mode Sender Port and Mode Switch Point for Application
Mode Manager
To model an application mode manager software component, use an AUTOSAR mode sender port.
Mode sender ports use a mode-switch (M-S) interface to output a mode switch to connected mode
user components.

You model the mode sender port as a model root outport, which is mapped to an AUTOSAR mode
sender port and a mode-switch (M-S) interface. The outport data type is an enumeration class with an
unsigned integer storage type, representing an AUTOSAR mode declaration group.

This example shows how to configure a mode sender port and related elements for an application
mode manager.

1 Open a model configured for AUTOSAR code generation. This example uses a model that
contains Stateflow logic for maintaining engine state. The model outputs the current engine
mode value.

2 Declare a mode declaration group — a group of mode values. You can declare mode values with
Simulink enumeration. In this example, the Stateflow logic defines EngineModes values Off,
Crank, Stall, Idle, and Run. For example:

3 Add an AUTOSAR M-S interface to the model. Open the AUTOSAR Dictionary and select M-S

Interfaces. Click the Add button . In the Add Interfaces dialog box, set isService to true
and enter a ModeGroup name. In this example, the mode declaration group is EngineModes.

4 AUTOSAR Component Development

4-166

4 Add an AUTOSAR mode sender port to the model. Expand AtomicComponents, expand the

component, and select ModeSenderPorts. Click the Add button . In the Add Ports dialog
box, set Interface to the name of the M-S interface you created.

5 Map the Simulink outport that outputs the mode value to the AUTOSAR mode sender port you
created. Open the Code Mappings editor and select the Outports tab. To map the outport to the
AUTOSAR mode sender port, set DataAccessMode to ModeSend, select the Port name, and for
Element, select the mode declaration group name that you specified for the M-S interface.

6 Generate code for the model.

The ARXML code includes referenced ModeSwitchPoints, ModeSwitchInterfaces, and
ModeDeclarationGroups. For example, the following ARXML code describes the
ModeSwitchPoint for the AUTOSAR mode sender port.
<RUNNABLE-ENTITY>
 ...
 <MODE-SWITCH-POINTS>
 <MODE-SWITCH-POINT UUID="...">
 <SHORT-NAME>OUT_currentState_EngineModes</SHORT-NAME>
 <MODE-GROUP-IREF>
 <CONTEXT-P-PORT-REF DEST="P-PORT-PROTOTYPE">/pkg/swc/mEngineFailureMode/currentState
 </CONTEXT-P-PORT-REF>
 <TARGET-MODE-GROUP-REF DEST="MODE-DECLARATION-GROUP-PROTOTYPE">
 /pkg/if/msInterface/EngineModes</TARGET-MODE-GROUP-REF>
 </MODE-GROUP-IREF>
 </MODE-SWITCH-POINT>
 </MODE-SWITCH-POINTS>
 ...
</RUNNABLE-ENTITY>

The C code includes Rte_Switch API calls to communicate mode switches to other software
components. For example, the following code communicates an EngineModes mode switch.
/* Outport: '<Root>/EngineMode' */
Rte_Switch_currentState_EngineModes(mEngineFailureMode_B.engstate);

See Also

Related Examples
• “Configure AUTOSAR Mode-Switch Interfaces” on page 4-314
• “Configure Disabled Mode for AUTOSAR Runnable Event” on page 4-198

 Configure AUTOSAR Mode-Switch Communication

4-167

More About
• “Mode-Switch Interface” on page 2-26
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-168

Configure AUTOSAR Nonvolatile Data Communication
The AUTOSAR standard defines port-based nonvolatile (NV) data communication, in which an
AUTOSAR software component reads and writes data to AUTOSAR nonvolatile components. To
implement NV data communication, AUTOSAR software components define provide and require ports
that send and receive NV data. For more information about modeling software component access to
AUTOSAR nonvolatile memory, see “Model AUTOSAR Nonvolatile Memory” on page 2-41.

In Simulink, you can create AUTOSAR NV interfaces and ports, and map Simulink inports and
outports to AUTOSAR NV ports. You model AUTOSAR NV ports with Simulink inports and outports, in
the same manner described in “Sender-Receiver Interface” on page 2-23.

To create an NV data interface and ports in Simulink:

1 Add an AUTOSAR NV interface to the model. Open the AUTOSAR Dictionary and select NV

Interfaces. Click the Add button . In the Add Interfaces dialog box, specify the interface
name and the number of associated NV data elements.

2 Select and expand the new NV interface. Select DataElements and modify the data element
attributes.

3 Add AUTOSAR NV ports to the model. Expand AtomicComponents and expand the component.
Select and use the NvReceiverPorts, NvSenderPorts, and NvSenderReceiverPorts views to
add the NV ports you require. For each NV port, select the NV interface you created.

4

5 Map Simulink inports and outports to the AUTOSAR NV ports you created. Open the Code
Mappings editor. Select and use the Inports and Outports tabs to map the ports. For each
inport or outport, select an AUTOSAR port, data element, and data access mode.

 Configure AUTOSAR Nonvolatile Data Communication

4-169

To programmatically configure AUTOSAR NV data communication elements, use the AUTOSAR
property and mapping functions. For example, the following MATLAB code adds an AUTOSAR NV
data interface and an NV receiver port to an open model. It then maps a Simulink inport to the
AUTOSAR NV receiver port.
% Add AUTOSAR NV data interface myNvInterface with NV data element DE3
arProps = autosar.api.getAUTOSARProperties(hModel);
addPackageableElement(arProps,'NvDataInterface','/pkg/if','myNvInterface');
add(arProps,'myNvInterface','DataElements','DE3');

% Add AUTOSAR NV receiver port NvRPort, associated with myNvInterface
add(arProps,'ASWC','NvReceiverPorts','NvRPort','Interface','myNvInterface');

% Map Simulink inport NvRPort_DE3 to AUTOSAR port/element pair NvRPort and DE3
slMap = autosar.api.getSimulinkMapping(hModel);
mapInport(slMap,'NvRPort_DE3','NvRPort','DE3','ImplicitReceive');

See Also

Related Examples
• “Nonvolatile Data Interface” on page 2-30
• “Configure AUTOSAR Sender-Receiver Interfaces” on page 4-310
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “Model AUTOSAR Nonvolatile Memory” on page 2-41
• “Model AUTOSAR Communication” on page 2-22
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-170

Configure AUTOSAR Port Parameters for Communication with
Parameter Component

The AUTOSAR standard defines port-based parameters for parameter communication. AUTOSAR
parameter communication relies on a parameter software component (ParameterSwComponent)
and one or more atomic software components that require port-based access to parameter data. The
ParameterSwComponent represents memory containing AUTOSAR parameters and provides
parameter data to connected atomic software components. For information about port-based
parameter workflows, see “Port Parameters” on page 2-36.

In Simulink, you can model the receiver side of AUTOSAR port-based parameter communication. To
configure an AUTOSAR atomic software component as a parameter receiver:

1 In an AUTOSAR component model, in the AUTOSAR Dictionary, create an AUTOSAR parameter
interface, parameter data elements, and a parameter receiver port.

2 In the Simulink model workspace, create a parameter, mark it as an argument, and set an initial
value. You can use Simulink parameter, lookup table, and breakpoint objects.

3 Map the Simulink model workspace parameter or lookup table to an AUTOSAR parameter
receiver port and parameter interface data element. Use the Parameters tab of the Code
Mappings editor or the mapParameter function.

This example shows how to configure an AUTOSAR software component as a receiver for parameter
communication.

1 Open a model configured for AUTOSAR code generation in which the software component
requires port-based access to parameter data.

2 Open the AUTOSAR Dictionary. To add a parameter interface to the model, select the Parameter

Interfaces view and click the Add button . In the Add Interfaces dialog box, specify the
name of the new interface and set Number of Data Elements to 1. Click Add.

3 Expand Parameter Interfaces and select the DataElements view. Examine and modify the
properties of the associated data element that you created, including its name.

 Configure AUTOSAR Port Parameters for Communication with Parameter Component

4-171

4 Expand AtomicComponents and expand the component. To add a parameter receiver port to

the model, go to the ParameterReceiverPorts view and click the Add button . In the Add
Ports dialog box, specify the name of the new port and set Interface to the name of the
parameter interface that you created. Click Add.

5 In the Simulink model workspace, create a data object for the parameter. For example, use Model
Explorer. With the data object selected, set the Name and Value fields. To configure the
parameter as a model argument (that is, unique to each instance of a multi-instance model),
select the Argument check box.

Reference the data object name in the model. For example, enter k1 in the Gain parameter field
of a Gain block.

6 Open the Code Mappings editor and select the Parameters tab. In the Model Parameter
Arguments group, select the parameter data object that you created. In the Mapped To menu,
select AUTOSAR parameter type PortParameter.

4 AUTOSAR Component Development

4-172

7
To view and modify other code and calibration attributes for the parameter, click the icon.

a Set Port to the name of the parameter receiver port that you configured in the AUTOSAR
Dictionary.

b Set DataElement to the name of the parameter interface data element that you configured
in the AUTOSAR Dictionary.

For more information, see “Map Model Workspace Parameters to AUTOSAR Component
Parameters” on page 4-54.

8 When you generate code for the AUTOSAR component model:

• The exported ARXML files contain descriptions of the parameter receiver component,
parameter interface, parameter data element, and parameter receiver port.

<PARAMETER-INTERFACE UUID="...">
 <SHORT-NAME>myParamInterface</SHORT-NAME>
 <IS-SERVICE>false</IS-SERVICE>
 <PARAMETERS>
 <PARAMETER-DATA-PROTOTYPE UUID="...">
 <SHORT-NAME>ParamElement</SHORT-NAME>
 ...
 </PARAMETER-DATA-PROTOTYPE>
 </PARAMETERS>
</PARAMETER-INTERFACE>

• The generated C code contains AUTOSAR port parameter Rte function calls.

/* Model step function */
void mArPortParam_Step(void)
{
...
 Rte_IWrite_mArPortParam_Step_Out2_Out2(Rte_Prm_myParamPort_ParamElement() *
 Rte_IRead_mArPortParam_Step_In2_In2());
}

At run time, the software can access the parameter data element as a port-based parameter.

See Also
getParameter | mapParameter

Related Examples
• “Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54
• “Port Parameters” on page 2-36

 Configure AUTOSAR Port Parameters for Communication with Parameter Component

4-173

More About
• “Model AUTOSAR Communication” on page 2-22
• “Model AUTOSAR Component Behavior” on page 2-32

4 AUTOSAR Component Development

4-174

Configure Receiver for AUTOSAR External Trigger Event
Communication

The AUTOSAR standard defines external trigger event communication, in which an AUTOSAR
software component or service signals an external trigger occurred event
(ExternalTriggerOccurredEvent) to another component. The receiving component activates a
runnable in response to the event.

In Simulink, you can model the receiver portion of AUTOSAR external trigger event communication.
Select a component that you want to react to an external trigger. In the component, you create a
trigger interface, a trigger receiver port to receive an ExternalTriggerOccurredEvent, and a
runnable that the event activates.

This example shows how to configure an AUTOSAR software component as a receiver for external
trigger event communication.

1 Open a model configured for AUTOSAR code generation, in which you want to activate a
runnable based on receiving an AUTOSAR ExternalTriggerOccurredEvent.

For a sample model that uses external trigger event communication, see
autosar_swc_fcncalls. In autosar_swc_fcncalls, asynchronous function-call subsystem
SS1 models an AUTOSAR runnable. An ExternalTriggerOccurredEvent activates the
runnable.

2
Open the AUTOSAR Dictionary. Select the Trigger Interfaces view and use the Add button
to add a trigger interface to the model. In the Add Interfaces dialog box, specify the name of the
new interface and set Number of Triggers to 1.

3 Expand Trigger Interfaces and select the Triggers view. Examine the properties of the
associated trigger. For an asynchronous (nonperiodic) trigger, set CseCode to None, indicating
an unspecified trigger period. For more information about specifying trigger periods, click the
help button in the triggers view.

 Configure Receiver for AUTOSAR External Trigger Event Communication

4-175

4 Expand AtomicComponents and expand the component. Select the TriggerReceiverPorts view

and use the Add button to add a trigger receiver port to the model. In the Add Ports dialog
box, specify the name of the new port and set Interface to the name of the trigger interface you
created.

5 Select the Runnables view and select the runnable that you want to activate based on receiving
an AUTOSAR ExternalTriggerOccurredEvent. In the Events subpane, set Event Type to
ExternalTriggerOccurredEvent. To display event properties, select the event name. For
Trigger, select the value corresponding to the trigger receiver port and trigger you created.

4 AUTOSAR Component Development

4-176

6 To complete the trigger receiver configuration, open the Code Mappings editor and select the
Functions tab. Select the Simulink entry-point function for the subsystem that models the
AUTOSAR ExternalTriggerOccurredEvent runnable. In the Runnable field, select the
runnable name.

See Also

Related Examples
• “Add Top-Level Asynchronous Trigger to Periodic Rate-Based System” on page 4-193
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “Model AUTOSAR Communication” on page 2-22
• “AUTOSAR Component Configuration” on page 4-3

 Configure Receiver for AUTOSAR External Trigger Event Communication

4-177

Configure AUTOSAR Runnables and Events
The internal behavior of an AUTOSAR software component is implemented by a set of runnable
entities (runnables). A runnable is a sequence of operations provided by the component that can be
started by the run-time environment (RTE). The component configures an event to activate each
runnable – for example, a timing event, data received, a client request, a mode change, component
startup or shutdown, or a trigger.

In Simulink, you can configure these types of AUTOSAR events.

Event Type Workflow Example
DataReceivedEvent Sender-receiver (S-R)

communication
“Configure Events for Runnable Activation”
on page 4-306

DataReceiveErrorEvent Sender-receiver (S-R)
communication

“Configure AUTOSAR Receiver Port for
DataReceiveErrorEvent” on page 4-105

ExternalTrigger‐
OccurredEvent

External trigger event
communication

“Configure Receiver for AUTOSAR External
Trigger Event Communication” on page 4-
175

InitEvent Activation of initialization
runnable

“Configure AUTOSAR Initialization
Runnable (R4.1)” on page 4-196

ModeSwitchEvent Mode-switch (M-S)
communication

“Configure AUTOSAR Mode-Switch
Communication” on page 4-162

OperationInvokedEvent Client-server (C-S)
communication

“Configure AUTOSAR Client-Server
Communication” on page 4-142

TimingEvent Periodic activation of runnable “Configure AUTOSAR TimingEvent for
Periodic Runnable” on page 4-305

To configure an AUTOSAR runnable in Simulink:

1 Open a model that is configured for AUTOSAR code generation. This example uses a writable
copy of the example model autosar_swc.

2 In the model, create or identify a root-level Simulink subsystem or function that implements a
sequence of operations. The subsystem or function must generate an entry-point function in C
code. In autosar_swc, the subsystem SS1 generates rate-based model step function
Runnable_1s.

3 Create or identify an AUTOSAR runnable to which to map the Simulink entry point function.
Open the AUTOSAR Dictionary. Expand AtomicComponents, expand the component, and select
the Runnables view. If you need to create a new AUTOSAR runnable, click the plus sign. The
model autosar_swc contains the periodic runnable Runnable_1s.

4 Select the row containing the runnable and configure its properties, including name and symbol.
The AUTOSAR runnable symbol-name that you specify is exported in ARXML descriptions and C

4 AUTOSAR Component Development

4-178

code. For an AUTOSAR server runnable, set the runnable property
canBeInvokedConcurrently to designate whether to enforce concurrency constraints. For
nonserver runnables, leave canBeInvokedConcurrently set to false. For more information,
see “Concurrency Constraints for AUTOSAR Server Runnables” on page 4-159.

5 Configure an event to activate the runnable. Go to the Events pane for the selected runnable. If
you need to create an event, click Add Event. Enter an event name and set the event type.

The steps to configure an event depend on the type of event. If the event relies on a
communication interface, such as data received (sender-receiver) or client request (client-
server), you must first configure the communication interface before configuring the event.

In the model autosar_swc, the periodic runnable Runnable_1s is activated by a TimingEvent
named Event_1s.

6 Map the Simulink entry-point function to the AUTOSAR runnable. Open the Code Mappings
editor and select the Functions tab. For model autosar_swc, select the periodic function with a
1s sample time and map it to AUTOSAR runnable Runnable_1s.

To see the results of AUTOSAR runnable and event configuration in ARXML descriptions and C code,
build the model.

If an AUTOSAR software component model contains multiple runnables, you can configure the order
in which runnables execute. For more information, see “Configure AUTOSAR Runnable Execution
Order” on page 4-181.

 Configure AUTOSAR Runnables and Events

4-179

See Also

Related Examples
• “Configure AUTOSAR Runnable Execution Order” on page 4-181
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Modeling Patterns for AUTOSAR Runnables” on page 2-11
• “Model AUTOSAR Software Components” on page 2-3
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-180

Configure AUTOSAR Runnable Execution Order
For AUTOSAR Classic Platform software components that contain multiple runnables, the AUTOSAR
Timing Extensions specification defines execution order constraints. These constraints specify the
execution order of runnable entities within a component. You can view and manipulate the
constraints at the component level or, in AUTOSAR architecture models, at the Virtual Function Bus
(VFB) level.

In Simulink, you can:

• Import component- and VFB-level execution order constraints from ARXML files.
• Open an AUTOSAR component or architecture model and use the Schedule Editor to modify the

execution order of runnables.
• Export component- and VFB-level execution order constraints to ARXML files.
• In a component model, update execution order constraints by importing ARXML changes.

In an AUTOSAR software component model, use the Schedule Editor to schedule and specify the
execution order of the runnables belonging to that component. The Schedule Editor displays
partitions in a model, the data connections between them, and the order of those partitions. In
AUTOSAR component models, partitions correspond to runnable entities that execute independently.
In the editor, you can:

• View a graphical representation of runnables as partitions in an AUTOSAR component.
• Create partitions and map them to AUTOSAR runnables.
• Directly specify the execution order of runnables.

The Schedule Editor supports multiple modeling styles, including rate-based and export-function
modeling. For more information, see “Using the Schedule Editor” and “Create Partitions”. You can
also use the Schedule Editor in AUTOSAR architecture modeling. See “Configure AUTOSAR
Scheduling and Simulation” on page 8-31.

In a standalone AUTOSAR component model, to open the Schedule Editor, open the Modeling tab
and select Schedule Editor. For the runnables in an AUTOSAR component model, the Schedule
Editor initially displays implicit partitions, created based on the component modeling style. You can
view and configure the implicit partitions or create explicit partitions and map them to new or
existing AUTOSAR runnables.

To view and configure implicit partitions:

1 Open AUTOSAR example model autosar_swc_expfcns, which uses Simulink exported
functions to model AUTOSAR runnables.

 Configure AUTOSAR Runnable Execution Order

4-181

2 Open the Modeling tab and select Schedule Editor. The Schedule Editor displays the periodic
exported functions, which map to AUTOSAR runnables, as implicit partitions.

Use the editor controls to reorder the partitions. For example, in the Order section, click
directional arrows or drag table entries.

4 AUTOSAR Component Development

4-182

To create an explicit partition in an AUTOSAR software component:

1 Open AUTOSAR example model matlabroot/help/toolbox/autosar/examples/
mAutosarMultitasking.slx, which models periodic runnables that have multiple sample
rates.

Initially, from a Schedule Editor perspective, the model contains implicit partitions D1, D2, D3,
and D4.

 Configure AUTOSAR Runnable Execution Order

4-183

2 To create a partition, open the block parameters dialog box for the SS1 subsystem. With Treat as
atomic unit selected, set parameter Schedule as to Periodic partition. Specify a partition
name, such as P1, and sample time 1. Click Apply. Update the model diagram.

3 Open the Modeling tab and select Schedule Editor. The Schedule Editor displays the explicit
periodic partition in the model.

4 In the model window, open the Code Mappings editor and select the Functions tab. Map the P1
partition function to an AUTOSAR runnable.

a If the configuration does not contain an AUTOSAR runnable to map, add a runnable. Open

the AUTOSAR Dictionary, Runnables view, and click the Add button . For this example,
create runnable Runnable_P1. Then select the runnable and create a timing event.

b In the Functions tab, map P1 to Runnable_P1.

4 AUTOSAR Component Development

4-184

Building an AUTOSAR model that contains execution order constraints exports component timing
information. If you set the AUTOSAR Dictionary XML option Exported XML File Packaging to
Modular, the timing information is exported into the file modelname_timing.arxml. This ARXML
code shows the execution order constraint exported for the runnables in mAutosarMultitasking,
based on the Schedule Editor configuration.
<SWC-TIMING UUID="...">
 <SHORT-NAME>mAutosarMultitasking</SHORT-NAME>
 <TIMING-REQUIREMENTS>
 <EXECUTION-ORDER-CONSTRAINT UUID="...">
 <SHORT-NAME>EOC</SHORT-NAME>
 <ORDERED-ELEMENTS>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Runnable_Step</SHORT-NAME>
 <EXECUTABLE-REF DEST="RUNNABLE-ENTITY">
 /pkg/swc/mAutosarMultitasking/IB/Runnable_Step
 </EXECUTABLE-REF>
 <SUCCESSOR-REFS>
 <SUCCESSOR-REF DEST="EOC-EXECUTABLE-ENTITY-REF">
 /Timing/mAutosarMultitasking/EOC/Runnable_P1
 </SUCCESSOR-REF>
 </SUCCESSOR-REFS>
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Runnable_P1</SHORT-NAME>
 <EXECUTABLE-REF DEST="RUNNABLE-ENTITY">
 /pkg/swc/mAutosarMultitasking/IB/Runnable_P1
 </EXECUTABLE-REF>
 <SUCCESSOR-REFS>
 <SUCCESSOR-REF DEST="EOC-EXECUTABLE-ENTITY-REF">
 /Timing/mAutosarMultitasking/EOC/Runnable_Step1
 </SUCCESSOR-REF>
 </SUCCESSOR-REFS>
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Runnable_Step1</SHORT-NAME>
 <EXECUTABLE-REF DEST="RUNNABLE-ENTITY">
 /pkg/swc/mAutosarMultitasking/IB/Runnable_Step1
 </EXECUTABLE-REF>
 <SUCCESSOR-REFS>
 <SUCCESSOR-REF DEST="EOC-EXECUTABLE-ENTITY-REF">
 /Timing/mAutosarMultitasking/EOC/Runnable_Step2
 </SUCCESSOR-REF>
 </SUCCESSOR-REFS>
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Runnable_Step2</SHORT-NAME>
 <EXECUTABLE-REF DEST="RUNNABLE-ENTITY">
 /pkg/swc/mAutosarMultitasking/IB/Runnable_Step2
 </EXECUTABLE-REF>
 <SUCCESSOR-REFS>

 Configure AUTOSAR Runnable Execution Order

4-185

 <SUCCESSOR-REF DEST="EOC-EXECUTABLE-ENTITY-REF">
 /Timing/mAutosarMultitasking/EOC/Runnable_Step3
 </SUCCESSOR-REF>
 </SUCCESSOR-REFS>
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Runnable_Step3</SHORT-NAME>
 <EXECUTABLE-REF DEST="RUNNABLE-ENTITY">
 /pkg/swc/mAutosarMultitasking/IB/Runnable_Step3
 </EXECUTABLE-REF>
 </EOC-EXECUTABLE-ENTITY-REF>
 </ORDERED-ELEMENTS>
 </EXECUTION-ORDER-CONSTRAINT>
 </TIMING-REQUIREMENTS>
 <BEHAVIOR-REF DEST="SWC-INTERNAL-BEHAVIOR">
 /pkg/swc/mAutosarMultitasking/IB
 </BEHAVIOR-REF>
</SWC-TIMING>

See Also
Schedule Editor

Related Examples
• “Configure AUTOSAR Runnables and Events” on page 4-178
• “Using the Schedule Editor”
• “Create Partitions”
• “Configure AUTOSAR Scheduling and Simulation” on page 8-31

More About
• “Modeling Patterns for AUTOSAR Runnables” on page 2-11
• “Model AUTOSAR Runnables Using Exported Functions” on page 2-19

4 AUTOSAR Component Development

4-186

Configure AUTOSAR Initialize, Reset, or Terminate Runnables
AUTOSAR applications sometimes require complex logic to execute during system initialization,
reset, and termination sequences. To model startup, reset, and shutdown processing in an AUTOSAR
software component, use the Simulink blocks Initialize Function and Terminate Function.

The Initialize Function and Terminate Function blocks can control execution of a component in
response to initialize, reset, or terminate events. For more information, see “Using Initialize,
Reinitialize, Reset, and Terminate Functions”, “Generate Code That Responds to Initialize, Reset, and
Terminate Events” (Simulink Coder), and AUTOSAR topic “Startup, Reset, and Shutdown” on page 2-
9.

In an AUTOSAR model, you map each Simulink initialize, reset, or terminate entry-point function to
an AUTOSAR runnable. For each runnable, configure the AUTOSAR event that activates the runnable.
In general, you can select any AUTOSAR event type except TimingEvent. The runnables work with
any AUTOSAR component modeling style. (However, software-in-the-loop simulation of AUTOSAR
initialize, reset, or terminate runnables works only with exported function modeling.)

This example shows how to configure an AUTOSAR software component for simple startup and
termination processing, using the Initialize Function and Terminate Function blocks.

1 Open a model that is configured for AUTOSAR code generation. This example uses a writable
copy of the example model autosar_swc.

Add an Initialize Function block to the model.

2 In the Initialize Function block, develop the logic that is required to execute during component
initialization, using the techniques described in “Using Initialize, Reinitialize, Reset, and
Terminate Functions”.

3 Add a Terminate Function block to the model.

 Configure AUTOSAR Initialize, Reset, or Terminate Runnables

4-187

4 In the Terminate Function block, develop the logic that is required to execute during component
termination, using the techniques described in “Using Initialize, Reinitialize, Reset, and
Terminate Functions”.

In this example, the Terminator block is a placeholder for saving the state value.
5 Add a terminate entry-point function to the model. In the Configuration Parameters dialog box, in

the Code Generation > Interface pane, under Advanced parameters, select the option
Terminate function required. Click Apply.

6 Open the Code Mappings editor. To update the Simulink to AUTOSAR mapping of the model, click
the Update button . The mapping now reflects the addition of the Initialize Function and
Terminate Function blocks and enabling of a terminate entry-point function.

7 Open the AUTOSAR Dictionary. Expand AtomicComponents, expand the component, and select
the Runnables view.

The runnables list already contains an initialization runnable, created as part of the initial

Simulink representation of the AUTOSAR software component. Use the Add button to add a
terminate runnable to the component. Select each runnable and configure its name and
properties.

The runnable symbol value shown in the runnables view becomes the runnable function name.
The runnable Name value is used in the names of RTE access methods generated for the
runnable.

4 AUTOSAR Component Development

4-188

8 For both the initialize and terminate runnables, configure an AUTOSAR event that activates the
runnable.

This example defines a ModeSwitchEvent for each runnable. Using a ModeSwitchEvent
requires creating a model declaration group, a mode-switch (M-S) interface, and a mode receiver
port for the model. For more information, see “Configure AUTOSAR Mode-Switch
Communication” on page 4-162.

In the runnables view, click the initialize runnable name to display and modify its associated
event properties. Add and configure an event.

 Configure AUTOSAR Initialize, Reset, or Terminate Runnables

4-189

In the runnables view, click the terminate runnable name to display and modify its associated
event properties. Add and configure an event.

4 AUTOSAR Component Development

4-190

9 Open the Code Mappings editor and select the Functions tab. Select the Simulink initialize and
terminate functions and map them to the AUTOSAR initialize and terminate runnables that you
configured.

10 Build the model and examine the generated code.

• The exported ARXML code contains an AUTOSAR runnable for each initialize, reset, or
terminate subsystem in the model, with the specified AUTOSAR runnable name and symbol.
The runnable description includes each AUTOSAR data access point and server call point
associated with the runnable.

• The generated C code contains RTE access methods for parameters, states, function callers,
and external I/O associated with the runnable.

See Also
Initialize Function | Terminate Function | Event Listener | State Writer | State Reader

 Configure AUTOSAR Initialize, Reset, or Terminate Runnables

4-191

Related Examples
• “Using Initialize, Reinitialize, Reset, and Terminate Functions”
• “Generate Code That Responds to Initialize, Reset, and Terminate Events” (Simulink Coder)
• “Create Test Harness to Generate Function Calls”
• “Configure AUTOSAR Mode-Switch Communication” on page 4-162

More About
• “Startup, Reset, and Shutdown” on page 2-9
• “Configure Generated C Function Interface for Model Entry-Point Functions” (Embedded Coder)
• “AUTOSAR Component Configuration” on page 4-3

4 AUTOSAR Component Development

4-192

Add Top-Level Asynchronous Trigger to Periodic Rate-Based
System

In Simulink, you can model an AUTOSAR software component in which an asynchronous function-call
runnable interacts with periodic rate-based runnables. This type of component uses both periodic and
asynchronous rates (sample times).

The approach can be used to model the JMAAB complex control model type beta (β) architecture. This
architecture is described in the document Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow , which is available from the MathWorks® website at https://
www.mathworks.com/solutions/mab-guidelines.html.

In JMAAB type beta modeling, at the top level of a control model, you place function layers above
scheduling layers. For example, here is an AUTOSAR example model, autosar_swc_fcncalls. In
this model, an asynchronous function-call runnable at the top level of the model interacts with a
periodic rate-based runnable.

Some guidelines apply to AUTOSAR modeling of the JMAAB type beta controller layout:

• IRVs must be modeled with Rate Transition blocks.
• Function-call subsystems must have asynchronous rates. (In the function-call subsystem Trigger

block, Sample time type must be triggered, not periodic.)
• For each asynchronous function-call subsystem, you must insert an Asynchronous Task
Specification task block between the function-call root inport and the subsystem.

Here is the AUTOSAR Dictionary view of the runnables. An event triggers the asynchronous function-
call runnable. The event must be of type DataReceivedEvent, DataReceiveErrorEvent,
ModeSwitchEvent, InitEvent, or ExternalTriggerOccurredEvent.

 Add Top-Level Asynchronous Trigger to Periodic Rate-Based System

4-193

https://www.mathworks.com/solutions/mab-guidelines.html
https://www.mathworks.com/solutions/mab-guidelines.html

In this example, an ExternalTriggerOccurredEvent activates the AUTOSAR runnable. A trigger
interface delivers the event to a trigger receiver port. For more information about
ExternalTriggerOccurredEvents, see “Configure Receiver for AUTOSAR External Trigger Event
Communication” on page 4-175.

Here is the Code Mappings editor view of the Simulink entry-point functions. The functions are
mapped to AUTOSAR function-trigger, initialization, and periodic runnables, respectively.

See Also
Rate Transition | Asynchronous Task Specification

Related Examples
• “Configure Receiver for AUTOSAR External Trigger Event Communication” on page 4-175
• “Modeling Patterns for AUTOSAR Runnables” on page 2-11
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “Model AUTOSAR Software Components” on page 2-3

4 AUTOSAR Component Development

4-194

• “AUTOSAR Component Configuration” on page 4-3

 Add Top-Level Asynchronous Trigger to Periodic Rate-Based System

4-195

Configure AUTOSAR Initialization Runnable (R4.1)
AUTOSAR Release 4.1 introduced the AUTOSAR initialization event (InitEvent). You can use an
InitEvent to designate an AUTOSAR runnable as an initialization runnable, and then map an
initialization function to the runnable. Using an InitEvent to initialize a software component is a
potentially simpler and more efficient than using AUTOSAR mode management, in which you define a
ModeDeclarationGroup with a mode for setting up and initializing a software component. (For
more information on the mode management approach, see “Configure AUTOSAR Mode-Switch
Communication” on page 4-162.)

If you import ARXML code that describes a runnable with an InitEvent, the ARXML importer
configures the runnable in Simulink as an initialization runnable.

Alternatively, you can configure a runnable to be the initialization runnable in Simulink. For example,

1 Open a model configured for AUTOSAR.
2 Open the Configuration Parameters dialog box, go to Code Generation > AUTOSAR Code

Generation Options, and verify that the selected AUTOSAR schema version is 4.1 or higher.
3 Open the AUTOSAR Dictionary. Navigate to a software component, and select the Runnables

view.
4 Select a runnable to configure as an initialization runnable, and click Add Event. From the

Event Type drop-down list, select InitEvent, and specify the Event Name. In this example,
initialization event myInitEvent is configured for runnable Runnable_Init.

You can configure at most one InitEvent for a runnable.
5 Open the Code Mappings editor and select the Functions tab.
6 To map an initialization function to the initialization runnable, select the function. From the

Runnable drop-down list, select the runnable for which you configured an InitEvent. In this

4 AUTOSAR Component Development

4-196

example, Simulink entry-point function Initialize is mapped to AUTOSAR runnable
Runnable_Init.

When you export ARXML code from a model containing an initialization runnable, the ARXML
exporter generates an InitEvent that is mapped to the initialization runnable and function. For
example:
<EVENTS>
 <INIT-EVENT UUID="...">
 <SHORT-NAME>myInitEvent</SHORT-NAME>
 <START-ON-EVENT-REF DEST="RUNNABLE-ENTITY">/.../Runnable_Init</START-ON-EVENT-REF>
 </INIT-EVENT>
</EVENTS>

See Also

Related Examples
• “Configure AUTOSAR Runnables and Events” on page 4-178
• “Configure AUTOSAR Runnables” on page 4-21

 Configure AUTOSAR Initialization Runnable (R4.1)

4-197

Configure Disabled Mode for AUTOSAR Runnable Event
In an AUTOSAR software component model, you can set the DisabledMode property of a runnable
event to potentially prevent a runnable from running in certain modes.

Given a model containing a mode receiver port and defined mode values, you can programmatically
get and set the DisabledMode property of a TimingEvent, DataReceivedEvent,
ModeSwitchEvent, OperationInvokedEvent, DataReceiveErrorEvent, or
ExternalTriggerOccurredEvent. The property is not supported for an InitEvent.

The value of the DisabledMode property is either '' (no disabled modes) or one or more mode
values of the form 'mrPortName.modeName'. To set the DisabledMode property of a runnable
event in your model, use the AUTOSAR property function set.

The following example sets the DisabledMode property for a timing event named Event_t_1tic_B.
The set function call potentially disables the event for modes STARTUP and SHUTDOWN, which are
defined on mode-receiver port myMRPort.
hModel = 'mAutosarMsConfigAfter';
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
open_system(hModel)
arProps = autosar.api.getAUTOSARProperties(hModel);
eventPaths = find(arProps,[],'TimingEvent')

eventPaths =
 {'ASWC/Behavior/Event_t_1tic_B'} {'ASWC/Behavior/Event_t_10tic'}

dsblModes = get(arProps,eventPaths{1},'DisabledMode')

dsblModes =
 1×0 empty cell array

set(arProps,eventPaths{1},'DisabledMode',{'myMRPort.STARTUP','myMRPort.SHUTDOWN'});
dsblModes = get(arProps,eventPaths{1},'DisabledMode')

dsblModes =
 {'myMRPort.STARTUP'} {'myMRPort.SHUTDOWN'}

When you export ARXML files for the model, the timing event description for Event_t_1tic_B
includes a DISABLED-MODE-IREFS section that references the mode-receiver port, the mode
declaration group, and each disabled mode.

The software preserves the DisabledMode property of a runnable event across round trips between
an AUTOSAR authoring tool (AAT) and Simulink.

See Also

Related Examples
• “Configure AUTOSAR Runnables and Events” on page 4-178
• “Configure AUTOSAR Mode-Switch Communication” on page 4-162

4 AUTOSAR Component Development

4-198

Configure Internal Data Types for AUTOSAR
IncludedDataTypeSets

In an AUTOSAR software component model, you can import and export an ARXML description of an
AUTOSAR included data type set (IncludedDataTypeSet). An IncludedDataTypeSet is defined
as part of the internal behavior of a software component. It contains references to AUTOSAR data
type definitions that are internal to a component and not present in the component interface
descriptions. The referenced internal data type definitions can be shared among multiple software
components, as described in “Import and Reference Shared AUTOSAR Element Definitions” on page
3-29. For information about IncludedDataTypeSet workflows, see “Included Data Type Sets” on
page 2-33.

In Simulink, you can configure an AUTOSAR internal data type to be exported in an ARXML
IncludedDataTypeSet and generated in a C header file. In your AUTOSAR component model,
create a data type object, use it to describe the internal data type, and map the data type to header
file Rte_Type.h. For example:

1 Create or open an AUTOSAR software component model in which blocks are used internally and
are not part of the component model interface. For example, here is a model in which a Constant
block is not connected to a model inport or outport.

2 Create a data type object, Type3, in the base workspace or in a data dictionary. Select the Is
alias check box.

For AUTOSAR IncludedDataTypeSet export, Simulink supports these data types:

• Numeric
• Alias
• Bus

 Configure Internal Data Types for AUTOSAR IncludedDataTypeSets

4-199

• Fixed-point
• Enumerated

3 Map the Type3 data type to header file Rte_Type.h. In the data type object dialog box, Code
Generation tab, set Header file to Rte_Type.h. Click Apply.

4 To reference Type3 in the model, enter Type3 in the Constant block parameter field Output
data type.

Type3 is internal to the component and is not exported in component interface descriptions.
Because you mapped it to header file Rte_Type.h, it is exported in an IncludedDataTypeSet
description.

5 Build the model. In the exported ARXML, inside the description of the component internal
behavior, an IncludedDataTypeSet description references the internal data type.
<INCLUDED-DATA-TYPE-SETS>
 <INCLUDED-DATA-TYPE-SET>
 <DATA-TYPE-REFS>
 <DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">
 /Control_pkg/Control_dt/ApplDataTypes/Type3
 </DATA-TYPE-REF>
 </DATA-TYPE-REFS>
 </INCLUDED-DATA-TYPE-SET>
</INCLUDED-DATA-TYPE-SETS>

The generated Rte_Type.h header file contains an entry for the internal data type.
/* AUTOSAR Implementation data types, specific to software component */
typedef sint16 Type1;
typedef sint16 Type2;
typedef sint16 Type3;
typedef void* Rte_Instance;

See Also

Related Examples
• “Model AUTOSAR Component Behavior” on page 2-32
• “Import and Reference Shared AUTOSAR Element Definitions” on page 3-29

More About
• “Included Data Type Sets” on page 2-33

4 AUTOSAR Component Development

4-200

Configure AUTOSAR Per-Instance Memory
To model AUTOSAR per-instance memory (PIM) for AUTOSAR applications, you import per-instance
memory definitions from ARXML files or create per-instance memory content in Simulink. For
information about the high-level PIM workflow, see “Per-Instance Memory” on page 2-35.

AUTOSAR typed per-instance memory (ArTypedPerInstanceMemory) defines an AUTOSAR typed
memory block that is available for each instance of an AUTOSAR software component. In the
AUTOSAR run-time environment, calibration tools can access arTypedPerInstanceMemory blocks
for calibration and measurement.

To model AUTOSAR PIM, you can use Simulink block signals, discrete states, or data stores in your
model.

In this section...
“Configure Block Signals and States as AUTOSAR Typed Per-Instance Memory” on page 4-201
“Configure Data Stores as AUTOSAR Typed Per-Instance Memory” on page 4-202
“Configure Data Stores to Preserve State Information at Startup and Shutdown” on page 4-204

Configure Block Signals and States as AUTOSAR Typed Per-Instance
Memory
To generate arTypedPerInstanceMemory blocks for Simulink block signal and discrete state data
in your AUTOSAR model, open the Code Mappings editor and select the Signals/States tab. Select
signals and states and map them to arTypedPerInstanceMemory. For example:

1 Open an AUTOSAR model that contains signals or states for which you want to generate
arTypedPerInstanceMemory blocks. This example uses model autosar_swc_counter.

2 In the AUTOSAR Code perspective, open the Code Mappings editor and select the Signals/
States tab. In the list of available signals, select sum_out. Selecting a signal highlights the
signal in the model diagram. In the Mapped To drop-down list, select
ArTypedPerInstanceMemory. To view and modify AUTOSAR attributes for the per-instance

memory, click the icon. For more information about signal code and calibration attributes,
see “Map Block Signals and States to AUTOSAR Variables” on page 4-58. If you are mapping
signals and states in a submodel referenced by a component, see “Map Submodel Signals and
States to AUTOSAR Variables” on page 4-70.

 Configure AUTOSAR Per-Instance Memory

4-201

3 In the Signals/States tab, from the list of available states, select state X. In the Mapped To
drop-down list, select ArTypedPerInstanceMemory. To view and modify AUTOSAR attributes

for the per-instance memory, click the icon.

When you generate code:

• Exported ARXML files contain AR-TYPED-PER-INSTANCE-MEMORYS descriptions for signals and
states that you configured as ArTypedPerInstanceMemory.

• Generated C code contains Rte_Pim_* API calls for signal and state variables.

For referenced models within an AUTOSAR component model, Embedded Coder maps internal
signals and states for model reference code generation. Internal signals and states map to AUTOSAR
ArTypedPerInstanceMemory for multi-instance model reference or to AUTOSAR StaticMemory
for single-instance model reference.

Configure Data Stores as AUTOSAR Typed Per-Instance Memory
To generate arTypedPerInstanceMemory blocks for Simulink data store memory blocks in your
AUTOSAR model, open the Code Mappings editor and select the Data Stores tab. Select data stores
and map them to arTypedPerInstanceMemory. For example:

4 AUTOSAR Component Development

4-202

1 Open an AUTOSAR model that contains data stores that you want to generate
arTypedPerInstanceMemory blocks for. This example uses model autosar_bsw_sensor1.

2 In the AUTOSAR Code perspective, open the Code Mappings editor and select the Data Stores
tab. In the list of available data stores, select data store LowSetPoint. Selecting a data store
highlights the data store memory block in the model diagram. In the Mapped To drop-down list,
select ArTypedPerInstanceMemory. To view and modify AUTOSAR attributes for the per-

instance memory, click the icon. For more information about data store code and calibration
attributes, see “Map Data Stores to AUTOSAR Variables” on page 4-56. If you are mapping data
stores in a submodel referenced by a component, see “Map Submodel Data Stores to AUTOSAR
Variables” on page 4-69.

When you generate code:

• Exported ARXML files contain AR-TYPED-PER-INSTANCE-MEMORYS descriptions for data stores
that you configured as ArTypedPerInstanceMemory.

• Generated C code contains Rte_Pim_* API calls for data store variables.

When you build your model, the XML files that are generated define an exclusive area for each Data
Store Memory block that references per-instance memory. Every runnable that accesses per-instance
memory runs inside the corresponding exclusive area. If multiple AUTOSAR runnables have access to
the same Data Store Memory block, the exported AUTOSAR specification enforces data consistency

 Configure AUTOSAR Per-Instance Memory

4-203

by using an AUTOSAR exclusive area. With this specification, the runnables have mutually exclusive
access to the per-instance memory global data, which prevents data corruption.

In the AUTOSAR attributes of the per-instance memory, if you select needsNVRAMAccess, a
SERVICE-NEEDS entry is declared in XML files. The entry indicates that the per-instance memory is a
RAM mirror block and requires service from the NvM manager module. For more information about
modeling software component access to AUTOSAR nonvolatile memory, see “Model AUTOSAR
Nonvolatile Memory” on page 2-41.

Configure Data Stores to Preserve State Information at Startup and
Shutdown
To facilitate bottom-up and round-trip workflows, you can configure NVRAM block state data to be
read out at startup and written away at shutdown by configuring the NVBlockNeeds properties
RestoreAtStart and StoreAtShutdown. To set these properties, you must configure your model
data stores as ArTypedPerInstanceMemory and set the property needsNVRAMAccess as true.

To set the these parameters interactively, you can use the Code Mappings editor by selecting the

pencil icon , or by using theNvBlockNeeds section of the Property Inspector:

To configure these parameters programmatically, you can configure the mapping object by using the
getDataStore function:

mappingObj = autosar.api.getSimulinkMapping(modelName);
mappingObj.mapDataStore(dsmBlockPath, 'ArTypedPerInstanceMemory', ...
'NeedsNVRAMAccess', 'true', ...
'RestoreAtStart', 'true', ...
'StoreAtShutdown', 'true');

See Also
getDataStore | getSignal | getState | mapDataStore | mapSignal | mapState | Data Store
Memory

4 AUTOSAR Component Development

4-204

Related Examples
• “Map Block Signals and States to AUTOSAR Variables” on page 4-58
• “Map Submodel Signals and States to AUTOSAR Variables” on page 4-70
• “Map Data Stores to AUTOSAR Variables” on page 4-56
• “Map Submodel Data Stores to AUTOSAR Variables” on page 4-69
• “Model AUTOSAR Component Behavior” on page 2-32

More About
• “Per-Instance Memory” on page 2-35
• “Model AUTOSAR Nonvolatile Memory” on page 2-41

 Configure AUTOSAR Per-Instance Memory

4-205

Configure AUTOSAR Static Memory
To model AUTOSAR static memory for AUTOSAR applications, you import static memory definitions
from ARXML files or create static memory content in Simulink. For information about the high-level
static memory workflow, see “Static and Constant Memory” on page 2-35.

AUTOSAR static memory (StaticMemory) corresponds to Simulink internal global signals. In the
AUTOSAR run-time environment, calibration tools can access StaticMemory blocks for calibration
and measurement.

To model AUTOSAR static memory, you can use Simulink block signals, discrete states, or data stores
in your model.

In this section...
“Configure Block Signals and States as AUTOSAR Static Memory” on page 4-206
“Configure Data Stores as AUTOSAR Static Memory” on page 4-207

Configure Block Signals and States as AUTOSAR Static Memory
To generate StaticMemory blocks for Simulink block signal and discrete state data in your
AUTOSAR model, open the Code Mappings editor and select the Signals/States tab. Select signals
and states and map them to StaticMemory. For example:

1 Open an AUTOSAR model that contains signals or states that you want to generate
StaticMemory blocks for. This example uses model autosar_swc_counter.

2 In the AUTOSAR Code perspective, open the Code Mappings editor and select the Signals/
States tab. In the list of available signals, select equal_to_count. Selecting a signal highlights
the signal in the model diagram. In the Mapped To drop-down list, select StaticMemory. To

view and modify AUTOSAR attributes for the static memory, click the icon. For more
information about signal code and calibration attributes, see “Map Block Signals and States to
AUTOSAR Variables” on page 4-58.

4 AUTOSAR Component Development

4-206

3 Select the Signals/States tab, and then select state X. From the Mapped To drop-down list,
select StaticMemory. To view and modify AUTOSAR attributes for the static memory, click the

 icon.

When you generate code:

• Exported ARXML files contain STATIC-MEMORYS descriptions for signals and states that you
configured as StaticMemory.

• Generated C code declares and references the static memory variables.

For referenced models within an AUTOSAR component model, Embedded Coder maps internal
signals and states for model reference code generation. Internal signals and states map to AUTOSAR
ArTypedPerInstanceMemory for multi-instance model reference or to AUTOSAR StaticMemory
for single-instance model reference.

Configure Data Stores as AUTOSAR Static Memory
To generate StaticMemory blocks for Simulink data store memory blocks in your AUTOSAR model,
open the Code Mappings editor and select the Data Stores tab. Select data stores and map them to
StaticMemory. For example:

 Configure AUTOSAR Static Memory

4-207

1 Open an AUTOSAR model that contains data stores that you want to generate StaticMemory
blocks for. This example uses model autosar_bsw_sensor1.

2 In the AUTOSAR Code perspective, open the Code Mappings editor and select the Data Stores
tab. From the list of available data stores, select data store LowSetPoint. Selecting a data store
highlights the data store memory block in the model diagram. From the Mapped To drop-down
list, select StaticMemory. To view and modify AUTOSAR attributes for the static memory, click

the icon. For more information about data store code and calibration attributes, see “Map
Data Stores to AUTOSAR Variables” on page 4-56.

When you generate code:

• Exported ARXML files contain STATIC-MEMORYS descriptions for data stores that you configured
as StaticMemory.

• Generated C code declares and references the static memory variables.

Note AUTOSAR Blockset does not support static memory code generation for data stores in
referenced models.

4 AUTOSAR Component Development

4-208

See Also
getDataStore | getSignal | getState | mapDataStore | mapSignal | mapState | Data Store
Memory

Related Examples
• “Map Block Signals and States to AUTOSAR Variables” on page 4-58
• “Map Data Stores to AUTOSAR Variables” on page 4-56
• “Model AUTOSAR Component Behavior” on page 2-32

More About
• “Static and Constant Memory” on page 2-35

 Configure AUTOSAR Static Memory

4-209

Configure AUTOSAR Constant Memory
You can model AUTOSAR constant memory for AUTOSAR applications. To model AUTOSAR constant
memory, import constant memory definitions from ARXML files or create constant memory content in
Simulink. For information about the high-level constant memory workflow, see “Static and Constant
Memory” on page 2-35.

AUTOSAR constant memory (ConstantMemory) corresponds to Simulink internal global parameters.
In the AUTOSAR run-time environment, calibration tools can access ConstantMemory blocks for
calibration and measurement.

To model AUTOSAR constant memory, you can use Simulink model workspace parameters in your
model. To generate ConstantMemory blocks for model workspace parameter data in your AUTOSAR
model, open the Code Mappings editor. Use the Parameters tab to map parameters to
ConstantMemory. For example:

1 Open an AUTOSAR model that contains model workspace parameters for which you want to
generate ConstantMemory blocks. This example uses model autosar_swc_counter.

2 In the AUTOSAR Code perspective, open the Code Mappings editor and select the Parameters
tab. In the list of available parameters, select INC. In the Mapped To drop-down list, select
ConstantMemory. To view and modify AUTOSAR attributes for the constant memory, click the

 icon. For more information about parameter code and calibration attributes, see “Map Model
Workspace Parameters to AUTOSAR Component Parameters” on page 4-54.

When you generate code:

• Exported ARXML files contain CONSTANT-MEMORYS descriptions for parameters that you
configured as ConstantMemory.

4 AUTOSAR Component Development

4-210

• Generated C code declares and references the constant memory parameters.

See Also
getParameter | mapParameter

Related Examples
• “Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54
• “Model AUTOSAR Component Behavior” on page 2-32

More About
• “Static and Constant Memory” on page 2-35

 Configure AUTOSAR Constant Memory

4-211

Configure AUTOSAR Shared or Per-Instance Parameters
In this section...
“Configure Model Workspace Parameters as AUTOSAR Shared Parameters” on page 4-212
“Configure Model Workspace Parameters as AUTOSAR Per-Instance Parameters” on page 4-213

You can model AUTOSAR shared parameters (SharedParameters) and per-instance parameters
(PerInstanceParameters) for use in AUTOSAR software components that potentially are
instantiated multiple times. Shared parameter values are shared among all instances of a component.
Per-instance parameter values are unique and private to each component instance. In the AUTOSAR
run-time environment, calibration tools can access SharedParameters and
PerInstanceParameters for calibration and measurement.

To model AUTOSAR shared or per-instance parameters, import parameter definitions from ARXML
files or create parameter content in Simulink. For information about the high-level shared and per-
instance parameters workflow, see “Shared and Per-Instance Parameters” on page 2-36 .

To model AUTOSAR parameters in Simulink, you use model workspace parameters.

In this section...
“Configure Model Workspace Parameters as AUTOSAR Shared Parameters” on page 4-212
“Configure Model Workspace Parameters as AUTOSAR Per-Instance Parameters” on page 4-213

Configure Model Workspace Parameters as AUTOSAR Shared
Parameters
To model AUTOSAR shared parameters in Simulink:

1 Open an AUTOSAR model that contains a model workspace parameter for which you want to
generate an AUTOSAR SharedParameter. This example uses model autosar_swc_counter.

2 To model an AUTOSAR shared parameter in Simulink, configure a model workspace parameter
that is not a model argument (that is, not unique to each instance of a multi-instance model). For
example, in the Model Explorer view of the parameter, clear the Argument property. In example
model autosar_swc_counter, clear the Argument property for parameter K. Leave the
parameter StorageClass set to Auto.

3 In the AUTOSAR Code perspective, open the Code Mappings editor and select the Parameters
tab. In the list of available parameters, select K. In the Mapped To drop-down list, select
parameter type SharedParameter. To view and modify AUTOSAR attributes for the shared

4 AUTOSAR Component Development

4-212

parameter, click the icon. For more information about parameter code and calibration
attributes, see “Map Model Workspace Parameters to AUTOSAR Component Parameters” on
page 4-54.

When you generate code:

• Exported ARXML files contain SHARED-PARAMETERS descriptions for parameters that you
configured as SharedParameter.

• Generated C code contains Rte_CData calls where shared parameters are used.
autosar_swc_counter_B.Gain = Rte_CData_K() *
 Rte_IRead_Runnable_Step_RPort_InData();

Configure Model Workspace Parameters as AUTOSAR Per-Instance
Parameters
To model AUTOSAR per-instance parameters in Simulink:

1 Open an AUTOSAR model that contains a model workspace parameter for which you want to
generate an AUTOSAR PerInstanceParameter. This example uses model

 Configure AUTOSAR Shared or Per-Instance Parameters

4-213

autosar_swc_throttle_sensor. This model is part of AUTOSAR composition model
autosar_composition, which contains two instances of autosar_swc_throttle_sensor.

2 To model an AUTOSAR per-instance parameter in Simulink, configure a model workspace
parameter that is a model argument (that is, unique to each instance of a multi-instance model).
For example, in the Model Explorer view of the parameter, select the Argument property. In
example model autosar_swc_throttle_sensor, select the Argument property for parameter
TPSPercent_LkupTbl. Leave the parameter StorageClass set to Auto.

3 In the AUTOSAR Code perspective, open the Code Mappings editor and select the Parameters
tab. Select parameter TPSPercent_LkupTbl. In the Mapped To drop-down list, select
parameter type PerInstanceParameter. To view and modify AUTOSAR attributes for the per-

instance parameter, click the icon. For more information about parameter code and
calibration attributes, see “Map Model Workspace Parameters to AUTOSAR Component
Parameters” on page 4-54. If you are mapping parameters in a submodel referenced by a
component, see “Map Submodel Parameters to AUTOSAR Component Parameters” on page 4-68.

4 AUTOSAR Component Development

4-214

AUTOSAR example model autosar_composition is a composition model that contains several
components, including two instances of component model autosar_swc_throttle_sensor.

If you open autosar_composition, you can right-click the Model blocks that represent instances of
autosar_swc_throttle_sensor. If you open up each Model block dialog box, Instance
Parameters tab, and view them together, notice that each Model block uses a different value for the
per-instance parameter.

When you generate code:

• Exported ARXML files contain PER-INSTANCE-PARAMETERS descriptions for parameters that you
configured as PerInstanceParameter.

• Generated C code contains Rte_CData calls where per-instance parameters are used.
Rte_IWrite_Runnable_Step_TPS_Percent_Value(self, look1_iflf_linlcpw((float32)
 rtb_DataTypeConversion, (Rte_CData_TPSPercent_LkupTbl(self))->BP1,
 (Rte_CData_TPSPercent_LkupTbl(self))->Table, 10U));

See Also
getParameter | mapParameter

Related Examples
• “Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54
• “Map Submodel Parameters to AUTOSAR Component Parameters” on page 4-68
• “Model AUTOSAR Component Behavior” on page 2-32

 Configure AUTOSAR Shared or Per-Instance Parameters

4-215

More About
• “Shared and Per-Instance Parameters” on page 2-36

4 AUTOSAR Component Development

4-216

Configure Variants for AUTOSAR Ports and Runnables
AUTOSAR software components can use VariationPoint elements to enable or disable AUTOSAR
elements, such as ports and runnables, based on defined conditions. In Simulink, to configure
variants that enable or disable AUTOSAR ports and runnables:

• Use Variant Sink and Variant Source blocks to define variant condition logic and propagate variant
conditions.

• Use AUTOSAR.Parameter data objects with storage class SystemConstant to model AUTOSAR
system constants. The system constants represent the condition values that enable or disable
ports and runnables.

For example, here is an AUTOSAR component model that contains two Variant Source blocks and a
Variant Sink block. You can open the model from matlabroot/help/toolbox/autosar/
examples/mAutosarInlineVariant.slx.

To model an AUTOSAR system constant, the model defines AUTOSAR.Parameter data object
SysConA:
SysConA = AUTOSAR.Parameter;
SysConA.CoderInfo.StorageClass = 'Custom';
SysConA.CoderInfo.CustomStorageClass = 'SystemConstant';
SysConA.DataType = 'int32';
SysConA.Value = 1;

Each Variant Source or Variant Sink block defines variant condition logic, which is based on the
system constant value. You can specify an expression or a Simulink.Variant object containing an
expression. Here is the variant condition logic for Variant Source block RunnableStepVP.

 Configure Variants for AUTOSAR Ports and Runnables

4-217

When you generate code for the model:

• The exported ARXML code contains definitions for variation point proxies and variation points. In
this example, the VARIATION-POINT-PROXY entry has short-name c0, which is referenced in the
generated C code. SysConA appears as a system constant representing the associated condition
value.
<VARIATION-POINT-PROXYS>
 <VARIATION-POINT-PROXY UUID="...">
 <SHORT-NAME>c0</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <CONDITION-ACCESS BINDING-TIME="PRE-COMPILE-TIME">
 <SYSC-REF DEST="SW-SYSTEMCONST">/mInlineVariant_pkg/mInlineVariant_dt/SystemConstants/SysConA</SYSC-REF>
 == 0 ||
 <SYSC-REF DEST="SW-SYSTEMCONST">/mInlineVariant_pkg/mInlineVariant_dt/SystemConstants/SysConA</SYSC-REF>
 == 1</CONDITION-ACCESS>
 </VARIATION-POINT-PROXY>
</VARIATION-POINT-PROXYS>

VARIATION-POINT entries appear for AUTOSAR ports, runnables, and runnable accesses to
external data.
<R-PORT-PROTOTYPE UUID="...">
 <SHORT-NAME>In1</SHORT-NAME>
 <VARIATION-POINT>
 <SHORT-LABEL>In1_a3VP</SHORT-LABEL>
 <SW-SYSCOND BINDING-TIME="PRE-COMPILE-TIME">

4 AUTOSAR Component Development

4-218

 <SYSC-REF DEST="SW-SYSTEMCONST">/mInlineVariant_pkg/mInlineVariant_dt/SystemConstants/SysConA</SYSC-REF>
 == 0 ||
 <SYSC-REF DEST="SW-SYSTEMCONST">/mInlineVariant_pkg/mInlineVariant_dt/SystemConstants/SysConA</SYSC-REF>
 == 1</SW-SYSCOND>
 </VARIATION-POINT>
 ...
</R-PORT-PROTOTYPE>

• In the RTE compatible C code, short-name c0 is encoded in the names of preprocessor symbols
used in the variant condition logic. For example:
#if Rte_SysCon_c0
...
#endif

For more information, see “Variant Systems” (Embedded Coder) and “Variant Systems”.

See Also
AUTOSAR.Parameter | Variant Sink | Variant Source

Related Examples
• “Model AUTOSAR Variants” on page 2-38

More About
• “Variant Systems” (Embedded Coder)
• “System Constants” on page 2-34

 Configure Variants for AUTOSAR Ports and Runnables

4-219

Configure Variants for AUTOSAR Runnable Implementations
To vary the implementation of an AUTOSAR runnable, AUTOSAR software components can specify
variant condition logic inside a runnable. In Simulink, to model variant condition logic inside a
runnable:

• To represent variant implementations of a subsystem or model and define variant condition logic,
use a Variant Subsystem block.

• To model AUTOSAR system constants, use AUTOSAR.Parameter data objects with storage class
SystemConstant. The system constants represent the condition values that determine the active
subsystem or model implementation.

For example, here is an AUTOSAR component model that contains a Variant Subsystem block, which
models two variant implementations of a subsystem. You can open the model from matlabroot/
help/toolbox/autosar/examples/mAutosarVariantSubsystem.slx.

The variant choices are subsystems VAR1 and VAR2. The blocks are not connected because
connectivity is determined during simulation, based on the active variant.

To model an AUTOSAR system constant, the model defines AUTOSAR.Parameter data object
rainSensor:
rainSensor = AUTOSAR.Parameter;
rainSensor.CoderInfo.StorageClass = 'Custom';
rainSensor.CoderInfo.CustomStorageClass = 'SystemConstant';
rainSensor.DataType = 'uint8';
rainSensor.Value = 2;

The Variant Subsystem block dialog box defines the variant condition logic, which is based on the
system constant value. You can specify an expression or a Simulink.Variant object containing an
expression.

4 AUTOSAR Component Development

4-220

When you generate code for the model:

• In the ARXML code, the variant choices appear as VARIATION-POINT-PROXY entries with short-
names c0 and c1. rainSensor appears as a system constant representing the associated
condition value. For example:
<VARIATION-POINT-PROXYS>
 <VARIATION-POINT-PROXY UUID="...">
 <SHORT-NAME>c0</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <CONDITION-ACCESS BINDING-TIME="PRE-COMPILE-TIME">
 <SYSC-REF DEST="SW-SYSTEMCONST">/vss_pkg/vss_dt/SystemConstants/rainSensor</SYSC-REF>
 == 1</CONDITION-ACCESS>
 </VARIATION-POINT-PROXY>
 <VARIATION-POINT-PROXY UUID="...">
 <SHORT-NAME>c1</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <CONDITION-ACCESS BINDING-TIME="PRE-COMPILE-TIME">
 <SYSC-REF DEST="SW-SYSTEMCONST">/vss_pkg/vss_dt/SystemConstants/rainSensor</SYSC-REF>
 == 2</CONDITION-ACCESS>
 </VARIATION-POINT-PROXY>
</VARIATION-POINT-PROXYS>

• In the RTE compatible C code, short-names c0 and c1 are encoded in the names of preprocessor
symbols used in the variant condition logic. For example:
#if Rte_SysCon_c0
...
#elif Rte_SysCon_c1

 Configure Variants for AUTOSAR Runnable Implementations

4-221

...
#endif

See Also
Variant Subsystem | AUTOSAR.Parameter

Related Examples
• “Model AUTOSAR Variants” on page 2-38

More About
• “System Constants” on page 2-34

4 AUTOSAR Component Development

4-222

Export Variation Points for AUTOSAR Calibration Data
You can export variation points for AUTOSAR calibration data, including:

• Parameters — Calibration, shared internal, instance-specific, or constant memory
• Per-instance memory — C- typed or AR-typed
• Inter-runnable variables (IRVs) — Implicit or explicit

You can model calibration data in combination with different types of variant conditions. Model the
variant conditions by using Variant Source and Variant Sink blocks, Variant Subsystem blocks, or
model reference variants. When you build your model, the exported AUTOSAR XML (ARXML) files
contain the conditionally used data elements and their variation points.

For example, suppose that you open an AUTOSAR component model containing a Variant Subsystem
block, which models two variant implementations of a subsystem, VAR1 and VAR2.

In VAR1, which is enabled when rainSensor == 1, you define a parameter named scale and
reference it in a block. When you build the model, the exported ARXML contains a variation point
description for the parameter. In the variation point SHORT-LABEL, the parameter name is prefixed
with vp. In this example, the description indicates that the scale parameter is used when variant
condition rainSensor == 1 is true.
<VARIATION-POINT>
 <SHORT-LABEL>vpscale</SHORT-LABEL>
 <SW-SYSCOND BINDING-TIME="PRE-COMPILE-TIME"><SYSC-REF DEST="SW-SYSTEMCONST">

 Export Variation Points for AUTOSAR Calibration Data

4-223

 /vss_pkg/vss_dt/SystemConstants/rainSensor</SYSC-REF> == 1</SW-SYSCOND>
</VARIATION-POINT>

See Also
Variant Sink | Variant Source | Variant Subsystem

Related Examples
• “Configure Variants for AUTOSAR Ports and Runnables” on page 4-217
• “Configure Variants for AUTOSAR Runnable Implementations” on page 4-220

More About
• “Model AUTOSAR Variants” on page 2-38

4 AUTOSAR Component Development

4-224

Configure Dimension Variants for AUTOSAR Array Sizes
AUTOSAR software components can flexibly specify the dimensions of an AUTOSAR element, such as
a port, by using a symbolic reference to a system constant. The system constant defines the array size
of the port data type. To model AUTOSAR elements with variant array sizes in Simulink:

• Create blocks that represent AUTOSAR elements.
• To represent array size values, add AUTOSAR.Parameter data objects with storage class

SystemConstant.
• To specify an array size for an AUTOSAR element, reference an AUTOSAR.Parameter data object.

With variant array sizes, you can modify array size values in system constants between model
simulations, without regenerating code for simulation. When you build the model, the generated C
and ARXML code contains symbols corresponding to variant array sizes.

Suppose that you create a Simulink inport In1 to represent an AUTOSAR receiver port with a variant
array size.

To model the AUTOSAR system constant that specifies the dimensions of In1, create an
AUTOSAR.Parameter data object, SymDimA, with storage class SystemConstant. The data type
must be a signed 32-bit integer type.
SymDimA = AUTOSAR.Parameter;
SymDimA.CoderInfo.StorageClass = 'custom';
SymDimA.CoderInfo.CustomStorageClass = 'SystemConstant';
SymDimA.DataType = 'int32';
SymDimA.Min = 1;
SymDimA.Max = 100;
SymDimA.Value = 5;

In the dialog box for inport block In1, Signal Attributes tab, Port dimensions field, enter the
parameter name, SymDimA.

To allow symbolic dimensions to propagate throughout the model, you must select the model
configuration option Allow symbolic dimension specification.

When you generate code for the model, the name of the system constant, SymDimA, appears in C and
ARXML code to represent the variant array size. Here is a sample of the generated C code:
/* SignalConversion generated from: '<Root>/Vector Concatenate' */
for (i = 0; i < Rte_SysCon_SymDimA; i++) {
 rtb_VectorConcatenate[i] = tmpIRead[i];

Here is a sample of the exported ARXML descriptions:
<MAX-NUMBER-OF-ELEMENTS BINDING-TIME="PRE-COMPILE-TIME">
 <SYSC-REF DEST="SW-SYSTEMCONST">/varDim_pkg/dt/SystemConstants/SymDimA</SYSC-REF>
</MAX-NUMBER-OF-ELEMENTS>

 Configure Dimension Variants for AUTOSAR Array Sizes

4-225

See Also
AUTOSAR.Parameter | Allow symbolic dimension specification

Related Examples
• “Implement Symbolic Dimensions for Array Sizes in Generated Code” (Embedded Coder)
• “Model AUTOSAR Variants” on page 2-38

More About
• “System Constants” on page 2-34

4 AUTOSAR Component Development

4-226

Control AUTOSAR Variants with Predefined Value Combinations
To define the values that control variation points in an AUTOSAR software component, components
use the following AUTOSAR elements:

• SwSystemconst — Defines a system constant that serves as an input to control a variation point.
• SwSystemconstantValueSet — Specifies a set of system constant values to apply to an

AUTOSAR software component.
• PredefinedVariant — Describes a combination of system constant values, among potentially

multiple valid combinations, to apply to an AUTOSAR software component.

For example, in ARXML code, you can define SwSystemconsts for automobile features, such as
Transmission, Headlight, Sunroof, and Turbocharge. Then a PredefinedVariant can map
feature combinations to automobile model variants, such as Basic, Economy, Senior, Sportive,
and Junior.

Suppose that you have an ARXML specification of an AUTOSAR software component. If the ARXML
files also define a PredefinedVariant or SwSystemconstantValueSets for controlling variation
points in the component, you can resolve the variation points at model creation time. Specify a
PredefinedVariant or SwSystemconstantValueSets with which the importer can initialize
SwSystemconst data.

Typical steps include:

1 Get a list of the PredefinedVariants or SwSystemconstantValueSets defined in the
ARXML file.
>> obj = arxml.importer('mySWC.arxml');
>> find(obj,'/','PredefinedVariant','PathType','FullyQualified');
ans =
 '/pkg/body/Variants/Basic'
 '/pkg/body/Variants/Economy'
 '/pkg/body/Variants/Senior'
 '/pkg/body/Variants/Sportive'
 '/pkg/body/Variants/Junior'

>> obj = arxml.importer('mySWC.arxml');
>> find(obj,'/','SystemConstValueSet','PathType','FullyQualified')
ans =
 '/pkg/body/SystemConstantValues/A'
 '/pkg/body/SystemConstantValues/B'
 '/pkg/body/SystemConstantValues/C'
 '/pkg/body/SystemConstantValues/D'

2 Create a model from the ARXML file, and specify a PredefinedVariant or one or more
SwSystemconstantValueSets.

This example specifies PredefinedVariant Senior, which describes a combination of values for
Transmission, Headlight, Sunroof, and Turbocharge.
>> createComponentAsModel(obj,compNames{1},'ModelPeriodicRunnablesAs','AtomicSubsystem',...
 'PredefinedVariant','/pkg/body/Variants/Senior');

This example specifies SwSystemconstantValueSets A and B, which together provide values
for SwSystemconsts in the AUTOSAR software component.
>> createComponentAsModel(obj,compNames{1},'ModelPeriodicRunnablesAs','AtomicSubsystem',...
 'SystemConstValueSets',{'/pkg/body/SystemConstantValues/A','/pkg/body/SystemConstantValues/B'});

3 During model creation, the ARXML importer creates AUTOSAR.Parameter data objects, with
Storage class set to SystemConstant. The importer initializes the system constant data with
values based on the specified PredefinedVariant or SwSystemconstantValueSets.

 Control AUTOSAR Variants with Predefined Value Combinations

4-227

After model creation, you can run simulations and generate code based on the combination of
variation point input values that you specified.

In Simulink, you can redefine the SwSystemconst data that controls variation points without
recreating the model. Call the AUTOSAR property function createSystemConstants, and specify a
different imported PredefinedVariant or a different cell array of SwSystemconstantValueSets.
The function creates a set of system constant data objects with the same names as the original
objects. You can run simulations and generate code based on the revised combination of variation
point input values.

This example creates a set of system constant data objects with names and values based on imported
PredefinedVariant '/pkg/body/Variants/Economy'.
arProps = autosar.api.getAUTOSARProperties(hModel);
createSystemConstants(arProps,'/pkg/body/Variants/Economy');

Building the model exports previously imported PredefinedVariants and
SwSystemconstantValueSets to ARXML code.

See Also

Related Examples
• “Model AUTOSAR Variants” on page 2-38
• “Configure Variants for AUTOSAR Ports and Runnables” on page 4-217

More About
• “System Constants” on page 2-34

4 AUTOSAR Component Development

4-228

Configure Postbuild Variant Conditions for AUTOSAR Software
Components

AUTOSAR software components use variants to enable or disable AUTOSAR interfaces or
implementations in the execution path based on defined conditions. Variation points in a component
present a choice between two or more variants. Postbuild variant binding enables you to configure
AUTOSAR variants modeled in Simulink to activate on or after the AUTOSAR software component
startup by using an AUTOSAR run-time environment (RTE) function call. You can now:

• Import AUTOSAR software components that contain postbuild variation points from ARXML files.
• Import shared PostBuildVariantCriterion and PostBuildVariantCondition definitions

from ARXML files.
• Model AUTOSAR postbuild variation points in component models.
• Export ARXML variant descriptions that define PostBuildVariantCriterions and

PostBuildVariantConditions.
• Generate C code with AUTOSAR Rte_PbCon function calls.

You can create postbuild variants at startup for AUTOSAR component models as long as the
components contain Simulink variant blocks that model AUTOSAR variants. Alternatively, you can
import ARXML files that contain PostBuild conditions and have AUTOSAR blockset create the
parameter objects for each defined PostBuildVariantCriterion and the relevant Variant Source
and Variant Sink blocks with startup variant activation times.

For an example of how to create and configure postbuild conditions, open the model from
matlabroot/help/toolbox/autosar/examples/mAutosarVariantSubsystem.slx.

To specify the startup variant activation time, open the Block Parameters of the variant blocks in the
component model and configure the Variant activation time to Startup. For this model, configure
the Variant Subsystem block.

To model a postbuild condition, create a MATLAB variable. This model already defines a variant
condition as a AUTOSAR.Parameter data object, rainSensor. Configure this object as a MATLAB
variable postbuild condition:

rainSensor = 2;

The Variant Subsystem block dialog box defines the variant condition logic, which is based on the
postbuild constant value. You can specify an expression or a Simulink.Variant object containing
an expression.

 Configure Postbuild Variant Conditions for AUTOSAR Software Components

4-229

When you generate code and export ARXML for the model:

• The exported ARXML includes PostBuildVariantCriterion and
PostBuildVariantCondition descriptions for the postbuild variant criteria and conditions that
you defined.

<POST-BUILD-VARIANT-CONDITIONS>
 <POST-BUILD-VARIANT-CONDITION>
 <MATCHING-CRITERION-REF DEST="POST-BUILD-VARIANT-CRITERION">
 /vss_pkg/vss_dt/PostBuildCriterions/rainSensor
 </MATCHING-CRITERION-REF>
 <VALUE>1</VALUE>
 </POST-BUILD-VARIANT-CONDITION>
</POST-BUILD-VARIANT-CONDITIONS>

You can use the AUTOSAR Dictionary XML Options to generate the
PostBuildVariantCriterions and associated ValueSets as a package.

• The generated AUTOSAR C code includes Rte_PbCon function calls to resolve postbuild
conditions for variant binding.

void Runnable_Step(void)
{
...
 /* Outputs for Atomic SubSystem: '<Root>/Variant Subsystem' */
 if (Rte_PbCon_mAutosarVariantSubsystem_c0()) {
...
 } else if (Rte_PbCon_mAutosarVariantSubsystem_c1()) {
...

4 AUTOSAR Component Development

4-230

 }
 /* End of Outputs for SubSystem: '<Root>/Variant Subsystem' */
...
}

For software-in-the-loop (SIL) simulation, in the stub folder, the model build generates stub
implementations of the Rte_PbCon functions used to resolve the post-build conditions.

See Also
AUTOSAR.Parameter | Variant Sink | Variant Source | Variant Subsystem

Related Examples
• “Configure Variants for AUTOSAR Ports and Runnables” on page 4-217
• “Configure Variants for AUTOSAR Runnable Implementations” on page 4-220

More About
• “Model AUTOSAR Variants” on page 2-38
• “Activate Variant During Different Stages of Simulation and Code Generation Workflow”

 Configure Postbuild Variant Conditions for AUTOSAR Software Components

4-231

Configure Variant Parameter Values for AUTOSAR Elements
AUTOSAR software components can flexibly specify the parameter value of an AUTOSAR element by
using variant parameters. To model AUTOSAR elements with variable parameter values in Simulink:

• Create blocks that represent AUTOSAR elements.
• Represent varying parameter values by adding Simulink.VariantVariable data objects.
• Model AUTOSAR system constants by using AUTOSAR.Parameter data objects. The AUTOSAR

data objects represent the condition values that determine the active value of variant parameters.
• Associate an activation time with the AUTOSAR system constants by using

Simulink.VariantControl data objects. The activation time determines at which stage of code
generation you can modify the variant parameter values.

With variant parameters, you can modify parameter values prior to code compile or at model startup.
When you build the model, the generated C code contains values and conditions corresponding to
variant parameters. The exported ARXML code contains the variant choices as VARIATION-POINT-
PROXY entries and the variant control variable as a system constant representing the associated
condition value.

Specify Variant Parameters at Precompile Time
This example shows how to generate a code for an AUTOSAR element that contains variant
parameters without needing to regenerate the code for each set of values. In the generated code, the
variant parameter values are enclosed in preprocessor conditionals #if and #elif that enable you to
switch between the values prior to code compile.

For example, here is an AUTOSAR component model that contains a variant parameter, k, which
models multiple values for the Gain block. You can open the model from matlabroot/help/
toolbox/autosar/examples/mAutosarVariantParameter.slx.

This parameter defines multiple values for the Gain parameter and associates each value with variant
condition logic. You can specify the variant condition logic as an expression or
a Simulink.Variant object containing an expression.

ADAPTIVE = Simulink.Variant('MySys == 10');
LINEAR = Simulink.Variant('MySys == 1');
NONLINEAR = Simulink.Variant('MySys == 2');
k = Simulink.VariantVariable('Choices',{'ADAPTIVE', 10 ,'LINEAR',1,'NONLINEAR',3});

To model an AUTOSAR system constant, the model defines the AUTOSAR.Parameter data
object tmpSysCon.

4 AUTOSAR Component Development

4-232

tmpSysCon = AUTOSAR.Parameter(int32(1));
tmpSysCon.CoderInfo.StorageClass = 'Custom';
tmpSysCon.CoderInfo.CustomStorageClass = 'SystemConstant';

The value of tmpSysCon determines the active value of k.
MySys = Simulink.VariantControl('Value', tmpSysCon,'ActivationTime', 'code compile');

When you generate code for the model:

• In the ARXML code, the variant choices appear as VARIATION-POINT-PROXY entries with short-
names ADAPTIVE, LINEAR, and NONLINEAR. MySys appears as a system constant representing
the associated condition value.
<VARIATION-POINT-PROXYS>
 <VARIATION-POINT-PROXY UUID="744b1a40-2029-54ae-fba9-79a6ca104b8c">
 <SHORT-NAME>ADAPTIVE</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <CONDITION-ACCESS BINDING-TIME="PRE-COMPILE-TIME"><SYSC-REF DEST="SW-SYSTEMCONST">/DataTypes/SystemConstants/MySys</SYSC-REF> == 10</CONDITION-ACCESS>
 </VARIATION-POINT-PROXY>
 <VARIATION-POINT-PROXY UUID="af1f057b-45e6-58f7-7e12-b66857813de6">
 <SHORT-NAME>LINEAR</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <CONDITION-ACCESS BINDING-TIME="PRE-COMPILE-TIME"><SYSC-REF DEST="SW-SYSTEMCONST">/DataTypes/SystemConstants/MySys</SYSC-REF> == 1</CONDITION-ACCESS>
 </VARIATION-POINT-PROXY>
 <VARIATION-POINT-PROXY UUID="6ba924d2-49e1-5948-cbd1-c0990240bb21">
 <SHORT-NAME>NONLINEAR</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <CONDITION-ACCESS BINDING-TIME="PRE-COMPILE-TIME"><SYSC-REF DEST="SW-SYSTEMCONST">/DataTypes/SystemConstants/MySys</SYSC-REF> == 2</CONDITION-ACCESS>
 </VARIATION-POINT-PROXY>
</VARIATION-POINT-PROXYS>

• In the RTE compatible C code, the values of k are enclosed in preprocessor conditionals #if and
#elif. When you compile this code, Simulink evaluates the condition expressions. Based on the
condition expression that evaluates to true, the gain value associated with that condition logic
becomes active and compiles the code only for that gain value. You can then change the value of
the variant control variable MySys to compile the code for a different gain parameter value. You
are not required to regenerate the code for a different value of gain.
Parameters rtP = {
#if Rte_SysCon_ADAPTIVE || Rte_SysCon_LINEAR || Rte_SysCon_NONLINEAR
 /* Variable: k
 * Referenced by: '<Root>/Gain'
 */
#if Rte_SysCon_ADAPTIVE
 10.0
#elif Rte_SysCon_LINEAR
 1.0
#elif Rte_SysCon_NONLINEAR
 3.0
#endif
#define PARAMETERS_VARIANT_EXISTS
#endif
#ifndef PARAMETERS_VARIANT_EXISTS
 0
#endif /* PARAMETERS_VARIANT_EXISTS undefined */
};

Specify Variant Parameters at Postbuild Time
This example shows how to generate a runnable for an AUTOSAR element that runs for different sets
of variant parameter values without needing to recompile the code for each set of values. In the
generated code, the variant parameter values are enclosed in regular if conditions that enable you
to switch between the values at model startup.

 Configure Variant Parameter Values for AUTOSAR Elements

4-233

For example, here is an AUTOSAR component model that contains a variant parameter, k, which
models multiple values for the Gain block. You can open the model from matlabroot/help/
toolbox/autosar/examples/mAutosarVariantParameter.slx .

This parameter defines multiple values for the Gain parameter and associates each value with a
variant condition logic. You can specify the variant condition logic as an expression or
a Simulink.Variant object containing an expression.
ADAPTIVE = Simulink.Variant('MyPBCrit == 10');
LINEAR = Simulink.Variant('MyPBCrit == 1');
NONLINEAR = Simulink.Variant('MyPBCrit == 2');
k = Simulink.VariantVariable('Choices',{'ADAPTIVE', 10 ,'LINEAR',1,'NONLINEAR',3});

The value of MyPBCrit determines the active value of k.
MyPBCrit = Simulink.VariantControl('Value', 1, 'ActivationTime', 'startup');

When you generate code for the model:

• In the ARXML code, the variant choices appear as VARIATION-POINT-PROXY entries with short-
names ADAPTIVE, LINEAR, and NONLINEAR. MyPBCrit appears as a system constant
representing the associated condition value.
<VARIATION-POINT-PROXYS>
 <VARIATION-POINT-PROXY UUID="e773053e-d2a7-568c-768b-fee924d1fad6">
 <SHORT-NAME>ADAPTIVE</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <POST-BUILD-VARIANT-CONDITIONS>
 <POST-BUILD-VARIANT-CONDITION>
 <MATCHING-CRITERION-REF DEST="POST-BUILD-VARIANT-CRITERION">/DataTypes/PostBuildCriterions/MyPBCrit</MATCHING-CRITERION-REF>
 <VALUE>10</VALUE>
 </POST-BUILD-VARIANT-CONDITION>
 </POST-BUILD-VARIANT-CONDITIONS>
 </VARIATION-POINT-PROXY>
 <VARIATION-POINT-PROXY UUID="3ce69abb-b974-591d-c7a8-180c64bedfb5">
 <SHORT-NAME>LINEAR</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <POST-BUILD-VARIANT-CONDITIONS>
 <POST-BUILD-VARIANT-CONDITION>
 <MATCHING-CRITERION-REF DEST="POST-BUILD-VARIANT-CRITERION">/DataTypes/PostBuildCriterions/MyPBCrit</MATCHING-CRITERION-REF>
 <VALUE>1</VALUE>
 </POST-BUILD-VARIANT-CONDITION>
 </POST-BUILD-VARIANT-CONDITIONS>
 </VARIATION-POINT-PROXY>
 <VARIATION-POINT-PROXY UUID="b4b96126-4744-5093-360b-3965883aeeda">
 <SHORT-NAME>NONLINEAR</SHORT-NAME>
 <CATEGORY>CONDITION</CATEGORY>
 <POST-BUILD-VARIANT-CONDITIONS>
 <POST-BUILD-VARIANT-CONDITION>
 <MATCHING-CRITERION-REF DEST="POST-BUILD-VARIANT-CRITERION">/DataTypes/PostBuildCriterions/MyPBCrit</MATCHING-CRITERION-REF>
 <VALUE>2</VALUE>
 </POST-BUILD-VARIANT-CONDITION>
 </POST-BUILD-VARIANT-CONDITIONS>
 </VARIATION-POINT-PROXY>
</VARIATION-POINT-PROXYS>

4 AUTOSAR Component Development

4-234

• In the RTE compatible C code, the values of k are enclosed in regular if conditions. When you
execute the runnable built from this code, Simulink evaluates the condition expressions. Based on
the condition expression that evaluates to true, the gain value associated with that condition
logic becomes active and the runnable executes only for that gain value. You can then change the
value of the variant control variable MyPBCrit to execute the runnable for a different gain
parameter value. You are not required to recompile the code to build the runnable for a different
gain parameter value.
void mBasic_Init(void)
{
 /* Variant Parameters startup activation time */
 if (Rte_PbCon_ADAPTIVE()) {
 rtP.k = 10.0;
 } else if (Rte_PbCon_LINEAR()) {
 rtP.k = 1.0;
 } else if (Rte_PbCon_NONLINEAR()) {
 rtP.k = 3.0;
 }
}

See Also
“Use Variant Parameters to Reuse Block Parameters with Different Values”

Related Examples
• “Create a Simple Variant Parameter Model”
• “Model AUTOSAR Variants” on page 2-38

 Configure Variant Parameter Values for AUTOSAR Elements

4-235

Configure AUTOSAR CompuMethods
AUTOSAR software components use computation methods (CompuMethods) to convert between the
internal values and physical representation of AUTOSAR data. Common uses for CompuMethods are
linear data scaling and calibration and measurement.

Embedded Coder imports AUTOSAR CompuMethods described in ARXML code and preserves them
across round-trips between an AUTOSAR authoring tool (AAT) and Simulink. In Simulink, you can
modify imported CompuMethods or create and configure new CompuMethods.

This topic provides examples of configuring AUTOSAR CompuMethods in Simulink.

In this section...
“Configure AUTOSAR CompuMethod Properties” on page 4-236
“Create AUTOSAR CompuMethods” on page 4-237
“Configure CompuMethod Direction for Linear Functions” on page 4-238
“Export CompuMethod Unit References” on page 4-239
“Modify Linear Scaling for SCALE_LINEAR_AND_TEXTTABLE CompuMethod” on page 4-240
“Configure Rational Function CompuMethod for Dual-Scaled Parameter” on page 4-241

Configure AUTOSAR CompuMethod Properties
You can configure AUTOSAR CompuMethod properties in your model, either graphically or
programmatically. The CompuMethod properties you can modify include name, category, unit, display
format, AUTOSAR package, and Simulink data types.

To configure a CompuMethod using the graphical interface, open the AUTOSAR Dictionary and select
the CompuMethods view. This view displays the modifiable CompuMethods in the model, whether
imported from ARXML code or created in Simulink.

Select a CompuMethod and edit the available fields.

4 AUTOSAR Component Development

4-236

• Name — Specify name text
• Category — Select Identical, Linear, RatFunc, TextTable, or LinearAndTextTable (see

“CompuMethod Categories for Data Types” on page 2-49)
• Unit — Select from units available in the model
• DisplayFormat — Optionally specify format to be used by calibration and measurement tools to

display the data. Use an ANSI C printf format specifier string. For example, %2.1d specifies a
signed decimal number, with a minimum width of two characters and maximum precision of one
digit. The string produces a displayed value such as 12.2. For more information about constructing
a format specifier string, see “Configure DisplayFormat” on page 4-265.

• Package — Specify path of AUTOSAR package to be generated for CompuMethods
• Simulink DataTypes — Specify list of Simulink data types that reference the CompuMethod

To modify the AUTOSAR package for a CompuMethod, you can do either of the following:

• Enter a package path in the Package parameter field.
• To open the AUTOSAR Package Browser, click the button to the right of the Package field. Use

the browser to navigate to an existing package or create and select a package. When you select a
package in the browser and click Apply, the CompuMethod Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see “Configure
AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod” on page 4-93.

To associate a CompuMethod with a Simulink data type used in the model, select a CompuMethod
and click the Add button to the right of Simulink DataTypes. This action opens a dialog box with a
list of available data types. In the list of values, select a Simulink.NumericType or
Simulink.AliasType, or enter the name of a Simulink enumerated type. To add the type to the
Simulink DataTypes list, click OK.

To set the Simulink DataTypes property programmatically, open the model and use an AUTOSAR
property set function call similar to the following:
arProps=autosar.api.getAUTOSARProperties('cmSpeed');
set(arProps,'/pkg/CompuMethods/RpmCm','SlDataTypes',{'SpeedRpmAdt'})
sltypes=get(arProps,'/pkg/CompuMethods/RpmCm', 'SlDataTypes')

sltypes =
 'SpeedRpmAdt'

Create AUTOSAR CompuMethods
You can create AUTOSAR CompuMethods in your model, either graphically or programmatically. To
create an AUTOSAR CompuMethod using the graphical interface, open the AUTOSAR Dictionary and
select the CompuMethods view. To open the Add CompuMethod dialog box, click the Add button

. Configure the initial properties for the CompuMethod, such as name, category, unit, display
format for calibration, AUTOSAR package to generate, and associated Simulink data type. When you

 Configure AUTOSAR CompuMethods

4-237

click OK, the CompuMethods view in the AUTOSAR Dictionary is updated with the new
CompuMethod.

When you generate code, the exported ARXML code contains the CompuMethod definition and
references to it.

Configure CompuMethod Direction for Linear Functions
For designs originated in Simulink, you can control properties for an exported CompuMethod,
including the direction of CompuMethod conversion between internal and physical representations of
a value. Using either the AUTOSAR Dictionary or the AUTOSAR property set function, you can
specify one of the following CompuMethod direction values:

• InternalToPhys (default) — Generate CompuMethod sections for conversion of internal values
into their physical representations.

• PhysToInternal — Generate CompuMethod sections for conversion of physical values into their
internal representations.

• Bidirectional — Generate CompuMethod sections for both internal-to-physical and physical-to-
internal conversion directions.

To specify CompuMethod direction in the MATLAB Command Window, use an AUTOSAR property set
function call similar to the following:
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
arProps=autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','CompuMethodDirection','Bidirectional');
get(arProps,'XmlOptions','CompuMethodDirection')

To specify CompuMethod direction in the AUTOSAR Dictionary, select XML Options. Select a value
for parameter CompuMethod Direction. Click Apply.

When you generate code for your model, the CompuMethods in the exported ARXML code contain the
requested directional sections. For example, here is a CompuMethod generated with the
CompuMethod direction set to Bidirectional.

4 AUTOSAR Component Development

4-238

<COMPU-METHOD UUID="...">
 <SHORT-NAME>COMPU_EngSpdValue</SHORT-NAME>
 <CATEGORY>LINEAR</CATEGORY>
 <COMPU-INTERNAL-TO-PHYS>
 <COMPU-SCALES>
 <COMPU-SCALE>
 <SHORT-LABEL>intToPhys</SHORT-LABEL>
 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">24000</UPPER-LIMIT>
 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR>
 <V>0</V>
 <V>1</V>
 </COMPU-NUMERATOR>
 <COMPU-DENOMINATOR>
 <V>8</V>
 </COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 </COMPU-SCALES>
 </COMPU-INTERNAL-TO-PHYS>
 <COMPU-PHYS-TO-INTERNAL>
 <COMPU-SCALES>
 <COMPU-SCALE>
 <SHORT-LABEL>physToInt</SHORT-LABEL>
 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">3000</UPPER-LIMIT>
 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR>
 <V>0</V>
 <V>8</V>
 </COMPU-NUMERATOR>
 <COMPU-DENOMINATOR>
 <V>1</V>
 </COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 </COMPU-SCALES>
 </COMPU-PHYS-TO-INTERNAL>
</COMPU-METHOD>

Note CompuMethods of category TEXTTABLE, which are generated for Boolean or enumerated data
types, use only InternalToPhys, regardless of the direction parameter setting.

Export CompuMethod Unit References
The ARXML importer preserves unit and physical dimension information found in imported
CompuMethods. The software preserves CompuMethod unit and physical dimension information
across round-trips between an AUTOSAR authoring tool (AAT) and Simulink.

For designs originated in Simulink, the exporter generates a unit reference for each CompuMethod.
By convention, each CompuMethod references a unit named NoUnit. For example, here is a Boolean
data type CompuMethod and the unit it references.

<COMPU-METHOD UUID="...">
 <SHORT-NAME>COMPU_Boolean</SHORT-NAME>
 <CATEGORY>TEXTTABLE</CATEGORY>
 <UNIT-REF DEST="UNIT">/mymodel_pkg/mymodel_dt/NoUnit</UNIT-REF>
 ...
</COMPU-METHOD>
<UNIT UUID="...">
 <SHORT-NAME>NoUnit</SHORT-NAME>
 <FACTOR-SI-TO-UNIT>1</FACTOR-SI-TO-UNIT>
 <OFFSET-SI-TO-UNIT>0</OFFSET-SI-TO-UNIT>
</UNIT>

 Configure AUTOSAR CompuMethods

4-239

Providing a unit for each exported CompuMethod helps support calibration and measurement tool use
of exported AUTOSAR data.

Modify Linear Scaling for SCALE_LINEAR_AND_TEXTTABLE
CompuMethod
You can import and export an AUTOSAR CompuMethod that uses LINEAR and TEXTTABLE scaling.
Importing application data types that reference CompuMethods of category
SCALE_LINEAR_AND_TEXTTABLE creates Simulink.NumericType or Simulink.AliasType data
objects in the Simulink workspace. In Simulink, you can modify the LINEAR scaling for the
CompuMethods. The TEXTTABLE scaling is read-only.

For example, here is a CompuMethod with one LINEAR scale and two TEXTTABLE scales.

When you import the CompuMethod into a model, the importer creates a Simulink.NumericType
with linear scaling. To modify the linear scaling, open the Simulink.NumericType data object and
modify its fields.

For read-only access to the TEXTTABLE scaling information, use AUTOSAR property get function
calls similar to the following:

4 AUTOSAR Component Development

4-240

>> arProps=autosar.api.getAUTOSARProperties('mySWC');
>> % Get literals for COMPU_myType TEXTTABLE scales
>> get(arProps,'/simple_ar_package/simple_ar_dt/COMPU_myType','CellOfEnums')
ans =
 'SensorError' 'SignalNotAvailable'
>> % Get internal values for COMPU_myType TEXTTABLE scales
>> get(arProps,'/simple_ar_package/simple_ar_dt/COMPU_myType','IntValues')
ans =
 350 351

Configure Rational Function CompuMethod for Dual-Scaled Parameter
For an AUTOSAR dual-scaled parameter, which stores two scaled values of the same physical value,
the software generates the CompuMethod category RAT_FUNC. The computation method can be a
first-order rational function.

To configure and generate a dual-scaled parameter:

1 Open an AUTOSAR model. For the purposes of this example, create a Constant block from which
to reference an AUTOSAR dual-scaled parameter. In the model, connect the Constant block to a
Simulink outport.

2 Open the Model Data Editor (on the Modeling tab, click Model Data Editor) and select the
Parameters tab. Find the parameter entry for the Constant block. Use the Value column to
reference the name of a dual-scaled parameter. This example uses the parameter name T1Rec.

3 Create the T1Rec data object. In the Model Data Editor, to the right of the value T1Rec, click the
action button and select Create.

In the Create New Data dialog box, set Value to AUTOSAR.DualScaledParameter and click
Create. An AUTOSAR.DualScaledParameter data object appears in the base workspace. The
dual-scaled parameter property dialog box opens.

4 Configure the attributes of the dual-scaled parameter T1Rec. Execute the following MATLAB
code. The code sets up a conversion from an internal calibration time value to a physical
frequency (time reciprocal) value.
% Conversion from Time to Frequency
% F = 1/T
% In Other Words F = (0*T + 1)/(1*T+0);
T1Rec.CompuMethodName = 'CM3'; %Specify AUTOSAR CompuMethod name
T1Rec.DataType ='fixdt(1,32,0.01,0)';
T1Rec.CalToMainCompuNumerator=1;
T1Rec.CalToMainCompuDenominator=[1 0];
T1Rec.CalibrationMin = 0.001;
T1Rec.CalibrationMax = 1.0;
T1Rec.CalibrationValue = 0.1500;
T1Rec.CoderInfo.StorageClass = 'Custom';
T1Rec.CoderInfo.Identifier = '';
T1Rec.CoderInfo.CustomStorageClass = 'InternalCalPrm';
T1Rec.CoderInfo.CustomAttributes.PerInstanceBehavior =...
 'Parameter shared by all instances of the Software Component';
T1Rec.Description = '';
% T1Rec.Min = [];
% T1Rec.Max = [];

 Configure AUTOSAR CompuMethods

4-241

T1Rec.Unit = '';
T1Rec.CalibrationDocUnits = 'm/s²';

5 Inspect the property dialog box for the dual-scaled parameter T1Rec. Here are the main
attributes set by the MATLAB code.

6 Here are the calibration attributes set by the MATLAB code.

7 If CompuMethod direction is not already set to bidirectional in the AUTOSAR properties, use the
AUTOSAR Dictionary, XML Options view, to set it.

8 Generate code from the model.

When you generate code from the model, the ARXML exporter generates a CompuMethod of category
RAT_FUNC.
<COMPU-METHOD UUID="...">
 <SHORT-NAME>CM3</SHORT-NAME>
 <CATEGORY>RAT_FUNC</CATEGORY>
 <UNIT-REF DEST="UNIT">/mymodel_pkg/mymodel_dt/m_s_</UNIT-REF>
 <COMPU-INTERNAL-TO-PHYS>
 <COMPU-SCALES>
 <COMPU-SCALE>
 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR>
 <V>-100</V>
 </COMPU-NUMERATOR>
 <COMPU-DENOMINATOR>
 <V>0</V>
 <V>-1</V>
 </COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 </COMPU-SCALES>
 </COMPU-INTERNAL-TO-PHYS>
 <COMPU-PHYS-TO-INTERNAL>
 <COMPU-SCALES>

4 AUTOSAR Component Development

4-242

 <COMPU-SCALE>
 <COMPU-RATIONAL-COEFFS>
 <COMPU-NUMERATOR>
 <V>100</V>
 </COMPU-NUMERATOR>
 <COMPU-DENOMINATOR>
 <V>0</V>
 <V>1</V>
 </COMPU-DENOMINATOR>
 </COMPU-RATIONAL-COEFFS>
 </COMPU-SCALE>
 </COMPU-SCALES>
 </COMPU-PHYS-TO-INTERNAL>
</COMPU-METHOD>

The CompuMethod is referenced from the application data type generated for T1Rec.
<APPLICATION-PRIMITIVE-DATA-TYPE UUID="...">
 <SHORT-NAME>T1Rec_DualScaled</SHORT-NAME>
 <CATEGORY>VALUE</CATEGORY>
 <SW-DATA-DEF-PROPS>
 <SW-DATA-DEF-PROPS-VARIANTS>
 <SW-DATA-DEF-PROPS-CONDITIONAL>
 <SW-CALIBRATION-ACCESS>READ-WRITE</SW-CALIBRATION-ACCESS>
 <COMPU-METHOD-REF DEST="COMPU-METHOD">/mymodel_pkg/mymodel_dt/CM3</COMPU-METHOD-REF>
 <DATA-CONSTR-REF DEST="DATA-CONSTR">/mymodel_pkg/mymodel_dt/ApplDataTypes/
 DataConstrs/DC_T1Rec_DualScaled</DATA-CONSTR-REF>
 </SW-DATA-DEF-PROPS-CONDITIONAL>
 </SW-DATA-DEF-PROPS-VARIANTS>
 </SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

The application data type T1Rec_DualScaled is referenced from the parameter data prototype
generated for T1Rec.
<PARAMETER-DATA-PROTOTYPE UUID="...">
 <SHORT-NAME>T1Rec</SHORT-NAME>
 <SW-DATA-DEF-PROPS>
 <SW-DATA-DEF-PROPS-VARIANTS>
 <SW-DATA-DEF-PROPS-CONDITIONAL>
 <SW-CALIBRATION-ACCESS>READ-WRITE</SW-CALIBRATION-ACCESS>
 <SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
 </SW-DATA-DEF-PROPS-CONDITIONAL>
 </SW-DATA-DEF-PROPS-VARIANTS>
 </SW-DATA-DEF-PROPS>
 <TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/mymodel_pkg/mymodel_dt/ApplDataTypes/
 T1Rec_DualScaled</TYPE-TREF>
 ...
</PARAMETER-DATA-PROTOTYPE>

See Also

Related Examples
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod” on

page 4-93
• “Configure AUTOSAR XML Options” on page 4-43
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “CompuMethod Categories for Data Types” on page 2-49
• “AUTOSAR Component Configuration” on page 4-3

 Configure AUTOSAR CompuMethods

4-243

Configure AUTOSAR Data Types Export
The AUTOSAR standard defines an approach to AUTOSAR data types in which base data types are
mapped to implementation data types and application data types. Application and implementation
data types separate application-level physical attributes, such as real-world range of values, data
structure, and physical semantics, from implementation-level attributes, such as stored-integer
minimum and maximum and specification of a primitive-type (integer, Boolean, real, and so on). For
information about modeling data types, see “Model AUTOSAR Data Types” on page 2-44.

The software supports AUTOSAR data types in Simulink originated and round-trip workflows:

• For AUTOSAR components originated in Simulink, the software generates AUTOSAR application,
implementation, and base types to preserve the information contained within Simulink data types.

• For round-trip workflows involving AUTOSAR components originated outside MATLAB, the
ARXML importer and exporter preserve data type information and mapping for each imported
AUTOSAR data type.

For AUTOSAR data types originated in Simulink, you can control some aspects of data type export.
For example, you can control when application data types are generated, specify the AUTOSAR
package and short name exported for AUTOSAR data type mapping sets, or force ARXML export of
internal data constraints for AUTOSAR implementation data types.

In this section...
“Control Application Data Type Generation” on page 4-244
“Configure DataTypeMappingSet Package and Name” on page 4-245
“Initialize Data with ApplicationValueSpecification” on page 4-246
“Configure AUTOSAR Internal Data Constraints Export” on page 4-246

Control Application Data Type Generation
For AUTOSAR data types created in Simulink, by default, the software generates application base
types only for fixed-point data types and enumerated date types with storage types. If you want to
override the default behavior for generating application types, you can configure the ARXML exporter
to generate an application type, along with the implementation type and base type, for each exported
AUTOSAR data type. Use the XML options parameter ImplementationDataType Reference
(XMLOptions property ImplementationDataTypeReference), for which you can specify the
following values:

• Allowed (default) — Allow direct reference of implementation types in the generated ARXML
code. If an application data type is not strictly required to describe an AUTOSAR data type, use an
implementation data type reference.

• NotAllowed — Do not allow direct reference of implementation data types in the generated
ARXML code. Generate an application data type for each AUTOSAR data type.

Note The software always generates an implementation type and an application type in the
generated ARXML when exporting a Simulink.ValueType object.

To set the ImplementationDataTypeReference property in the MATLAB Command Window, use
an AUTOSAR property set function call similar to the following:

4 AUTOSAR Component Development

4-244

hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
arProps=autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ImplementationTypeReference','NotAllowed');
get(arProps,'XmlOptions','ImplementationTypeReference')

To set the ImplementationDataTypeReference property in the AUTOSAR Dictionary, select XML
Options. Select a value for parameter ImplementationDataType Reference. Click Apply.

Configure DataTypeMappingSet Package and Name

For AUTOSAR software components created in Simulink, you can control the AUTOSAR package and
short name exported for AUTOSAR data type mapping sets. To configure the data type mapping set
package for export, set the XMLOptions property DataTypeMappingPackage using the AUTOSAR
Dictionary or the AUTOSAR property set function.

hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
arProps=autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','DataTypeMappingPackage','/pkg/dt/DataTypeMappings');
get(arProps,'XmlOptions','DataTypeMappingPackage')

The exported ARXML code uses the specified package. The default mapping set short-name is the
component name ASWC prefixed to DataTypeMappingsSet.
<DATA-TYPE-MAPPING-REFS>
 <DATA-TYPE-MAPPING-REF DEST="DATA-TYPE-MAPPING-SET">
 /pkg/dt/DataTypeMappings/ASWCDataTypeMappingsSet</DATA-TYPE-MAPPING-REF>
</DATA-TYPE-MAPPING-REFS>
...
<AR-PACKAGE>
 <SHORT-NAME>DataTypeMappings</SHORT-NAME>
 <ELEMENTS>
 <DATA-TYPE-MAPPING-SET UUID="...">
 <SHORT-NAME>ASWCDataTypeMappingsSet</SHORT-NAME>
...
 </DATA-TYPE-MAPPING-SET>
 </ELEMENTS>
</AR-PACKAGE>

You can specify a short name for a data type mapping set using the AUTOSAR property function
addPackageableElement. The following example specifies a custom data type mapping set package
and name using MATLAB commands.
% Add a new data type mapping set
modelName = 'autosar_swc_expfcns';

 Configure AUTOSAR Data Types Export

4-245

addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(modelName);
propObj = autosar.api.getAUTOSARProperties(modelName);
newMappingSetPath = '/myPkg/mySubpkg/MyMappingSets';
newMappingSetName = 'MappingSetName';
newMappingSet = [newMappingSetPath '/' newMappingSetName];
addPackageableElement(propObj,'DataTypeMappingSet',newMappingSetPath,newMappingSetName);

% Configure the component behavior to use the new data type mapping set
swc = get(propObj,'XmlOptions','ComponentQualifiedName');
ib = get(propObj,swc,'Behavior','PathType','FullyQualified');
set(propObj,ib,'DataTypeMapping',newMappingSet);

% Force generation of application data types
set(propObj,'XmlOptions','ImplementationTypeReference','NotAllowed');

% Build
slbuild(modelName);

The exported ARXML code uses the specified package and name, as shown below.
<INTERNAL-BEHAVIORS>
 <SWC-INTERNAL-BEHAVIOR UUID="...">
 <SHORT-NAME>IB</SHORT-NAME>
 <DATA-TYPE-MAPPING-REFS>
 <DATA-TYPE-MAPPING-REF DEST="DATA-TYPE-MAPPING-SET">
 /myPkg/mySubpkg/MyMappingSets/MappingSetName</DATA-TYPE-MAPPING-REF>
 </DATA-TYPE-MAPPING-REFS>
...
 </SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

Initialize Data with ApplicationValueSpecification
To initialize AUTOSAR data objects typed by application data type, the AUTOSAR standard (R4.1 or
later) requires AUTOSAR application value specifications (ApplicationValueSpecifications).
Embedded Coder provides the following support:

• The ARXML importer uses ApplicationValueSpecifications found in imported ARXML files
to initialize the corresponding data objects in the Simulink model.

• Code generation exports ARXML code that uses ApplicationValueSpecifications to specify
initial values for AUTOSAR data.

For AUTOSAR parameters typed by implementation data type, code generation exports ARXML code
that uses NumericalValueSpecifications and (for enumerated types)
TextValueSpecifications to specify initial values. If initial values for parameters specify multiple
values, generated code uses ArrayValueSpecifications.

Configure AUTOSAR Internal Data Constraints Export
AUTOSAR applications use data constraints to implement limits on data types and provide a
controlled range of possible values. Internal data constraints represent minimum and maximum
values for implementation data types, reflecting the internal or machine view of the data.

By default, code generation does not export internal data constraint information for AUTOSAR
implementation data types in ARXML code. If you want to force export of internal data constraints for
implementation data types, select the XML option Internal DataConstraints Export.

If you select Internal DataConstraints Export, the exporter generates internal data constraints
into an AUTOSAR package with a default name, DataConstrs, at a fixed location under the

4 AUTOSAR Component Development

4-246

AUTOSAR data type package. Optionally, use the XML option Internal DataConstraints Package to
specify a different AUTOSAR package name and path.

To configure export of AUTOSAR internal data constraint information in your model:

1 Open the AUTOSAR Dictionary. On the AUTOSAR tab, select Code Interface > AUTOSAR
Dictionary.

2 Select XML Options. In the XML options view, under Additional Options, select Internal
DataConstraints Export.

3 Optionally, under Additional Packages, enter a package path for Internal DataConstraints
Package.

4 Build the model and inspect the generated code. Here is an example of an AUTOSAR internal
data constraint exported to ARXML code.
<AR-PACKAGE>
 <SHORT-NAME>IDC</SHORT-NAME>
 <ELEMENTS>
 ...
 <DATA-CONSTR UUID="...">
 <SHORT-NAME>DC_SInt8</SHORT-NAME>
 <DATA-CONSTR-RULES>
 <DATA-CONSTR-RULE>
 <INTERNAL-CONSTRS>
 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">-128</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">127</UPPER-LIMIT>
 </INTERNAL-CONSTRS>
 </DATA-CONSTR-RULE>
 </DATA-CONSTR-RULES>
 </DATA-CONSTR>
 </ELEMENTS>
</AR-PACKAGE>

Alternatively, you can programmatically configure the AUTOSAR XML options Internal
DataConstraints Export and Internal DataConstraints Package. For example:
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','InternalDataConstraintExport',true);
set(arProps,'XmlOptions','InternalDataConstraintPackage','/pkg/misc/IDC');

For more information, see “Configure AUTOSAR XML Options” on page 4-43.

 Configure AUTOSAR Data Types Export

4-247

See Also

Related Examples
• “Configure AUTOSAR XML Options” on page 4-43
• “Configure AUTOSAR Packages” on page 4-84
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “Model AUTOSAR Data Types” on page 2-44

4 AUTOSAR Component Development

4-248

Automatic AUTOSAR Data Type Generation
When you generate AUTOSAR-compliant C code for an AUTOSAR component model, Embedded
Coder generates AUTOSAR platform data types in the code. AUTOSAR type generation allows you to
generate AUTOSAR platform data types for top models, referenced models, and shared utilities
without configuring Simulink data type replacement.

The AUTOSAR standard defines platform data types for use by AUTOSAR software components. In
Simulink, you can model AUTOSAR data types used in elements such as data elements, operation
arguments, calibration parameters, measurement variables, and inter-runnable variables. To model
AUTOSAR data types, use corresponding Simulink built-in data types. For more information, see
“Model AUTOSAR Data Types” on page 2-44.

When you build your AUTOSAR model, C code generation replaces Simulink data types with
corresponding AUTOSAR platform data types.

Simulink Data Type AUTOSAR Platform Type
boolean boolean
single float32
double float64
int8 sint8
int16 sint16
int32 sint32
int64 sint64
uint8 uint8
uint16 uint16
uint32 uint32
uint64 uint64

For example, suppose that you create a simple AUTOSAR model containing Gain and Delay blocks,
and set the Gain block parameter Output data type to int8. When you generate code, in place of
Simulink data type int8, the AUTOSAR-compliant C code references AUTOSAR data type sint8.

void Runnable_Step(void)
{
 sint8 rtb_Delay;
 ...

 simple_DW.Delay_DSTATE[1] = (sint8)-rtb_Delay;
}

 Automatic AUTOSAR Data Type Generation

4-249

See Also

Related Examples
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “Model AUTOSAR Data Types” on page 2-44

4 AUTOSAR Component Development

4-250

Configure Parameters and Signals for AUTOSAR Calibration
and Measurement

Configure Simulink® model workspace parameters and signals for AUTOSAR run-time calibration
and measurement.

Map Model Workspace Parameters to AUTOSAR Parameters

Open the example model autosar_swc_counter.slx.

open_system('autosar_swc_counter')

From the Apps tab, open the AUTOSAR Component Designer app. Open the Code Mappings editor
and select the Parameters tab. Expand the list of available model parameters and select INC. In the
Mapped To drop-down list, select ConstantMemory.

 Configure Parameters and Signals for AUTOSAR Calibration and Measurement

4-251

To view and modify AUTOSAR attributes for the constant memory, click the icon. For more
information about parameter code and calibration attributes, see “Map Model Workspace Parameters
to AUTOSAR Component Parameters” on page 4-54.

4 AUTOSAR Component Development

4-252

If you have Simulink Coder and Embedded Coder software, you can generate algorithmic C code and
AUTOSAR XML (ARXML) component descriptions. You can test the generated code in Simulink or
integrate the code and descriptions into an AUTOSAR run-time environment.

When you generate code:

• Exported ARXML files contain CONSTANT-MEMORYS descriptions for parameters that you
configured as ConstantMemory. In the AUTOSAR run-time environment, calibration tools can
access AUTOSAR ConstantMemory blocks for calibration and measurement.

• Generated C code declares and references the constant memory parameters.

Map Simulink Signals and States to AUTOSAR Variables

Open the example model autosar_swc_counter.slx, if it is not already open.

From the Apps tab, open the AUTOSAR Component Designer app. Open the Code Mappings editor
and select the Signals/States tab. Expand the list of available signals and select equal_to_count.
Selecting a signal highlights the signal in the model diagram. In the Mapped To drop-down list,
select StaticMemory.

 Configure Parameters and Signals for AUTOSAR Calibration and Measurement

4-253

To view and modify AUTOSAR attributes for the static memory, click the icon. For more
information about signal code and calibration attributes, see “Map Block Signals and States to
AUTOSAR Variables” on page 4-58.

4 AUTOSAR Component Development

4-254

If you have Simulink Coder and Embedded Coder software, you can generate algorithmic C code and
AUTOSAR XML (ARXML) component descriptions. You can test the generated code in Simulink or
integrate the code and descriptions into an AUTOSAR run-time environment.

When you generate code:

• Exported ARXML files contain STATIC-MEMORYS descriptions for signals and states that you
configured as StaticMemory. In the AUTOSAR run-time environment, calibration tools can
access AUTOSAR StaticMemory blocks for calibration and measurement.

• Generated C code declares and references the static memory variables.

Related Links

• “Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54
• “Configure AUTOSAR Constant Memory” on page 4-210
• “Map Block Signals and States to AUTOSAR Variables” on page 4-58
• “Configure AUTOSAR Static Memory” on page 4-206
• “Configure AUTOSAR Per-Instance Memory” on page 4-201

 Configure Parameters and Signals for AUTOSAR Calibration and Measurement

4-255

Configure Subcomponent Data for AUTOSAR Calibration and
Measurement

For any model in an AUTOSAR model reference hierarchy, you can configure the model data for run-
time calibration and measurement. In submodels referenced from AUTOSAR software component
models, you can map parameters, data stores, signals, and states to AUTOSAR parameters and
variables. Submodel mapped internal data can be used in AUTOSAR memory sections, and is
available for software-in-the-loop (SIL) and processor-in-the-loop (PIL) testing from the top model or
calibration in the AUTOSAR run-time environment.

In this example, AUTOSAR component model autosar_component contains two instances of
autosar_subcomponent.

Each instance of autosar_subcomponent receives a separate set of parameter values, which you
can view in the Instance parameters tab of the Model block parameters dialog box.

To configure subcomponent data for run-time calibration and measurement, open the submodel
standalone, that is, in a separate model window. Use the Code Mappings editor to:

• Map submodel parameters to AUTOSAR component PerInstanceParameters.
• Map submodel signals, states, and data stores to AUTOSAR ArTypedPerInstanceMemory

variables.
• Set AUTOSAR code and calibration attributes for the submodel internal data.

To generate C code and AUTOSAR XML (ARXML) files that support run-time calibration of the
submodel internal data, open and build the component model that references the submodel.

4 AUTOSAR Component Development

4-256

Map Submodel Parameters to AUTOSAR Component PerInstanceParameters

Open the example model autosar_subcomponent.

open_system('autosar_subcomponent');

At the top level is a Simulink Function, for which the top model provides per-instance parameters.
Open the Simulink Function.

From the Apps tab, open the AUTOSAR Component Designer app. Open the Code Mappings editor
and select the Parameters tab. The example submodel has four model workspace parameters,
including a lookup table parameter. To map each Simulink parameter to an AUTOSAR per-instance
parameter, select each parameter and, in the Mapped To drop-down list, select
PerInstanceParameter.

 Configure Subcomponent Data for AUTOSAR Calibration and Measurement

4-257

Select the parameter engine_speed. To view and modify additional AUTOSAR attributes for the per-
instance parameter, click the icon. A properties dialog box opens.

For each AUTOSAR PerInstanceParameter, you can modify the SwAddrMethod (AUTOSAR
memory section), the calibration data access, and the calibration data display format. For more
information about parameter code and calibration attributes, see “Map Submodel Parameters to
AUTOSAR Component Parameters” on page 4-68.

When you generate code from the component model that references the submodel:

• Exported ARXML files contain PER-INSTANCE-PARAMETERS descriptions for submodel
parameters that you configured as AUTOSAR component PerInstanceParameters, and
descriptions of the SwAddrMethods referenced in the submodel.

• Generated C code references the submodel AUTOSAR per-instance parameters.
• The model build generates macros that provide access to the submodel data for SIL and PIL

testing and calibration in the AUTOSAR run-time environment.

Map Submodel Data Stores to AUTOSAR ArTypedPerInstanceMemory Variables

If they are not already open, open the example model autosar_subcomponent, the top-level
Simulink Function, the AUTOSAR Component Designer app, and the Code Mappings editor.

In the Code Mappings editor, select the Data Stores tab. The example submodel has a Data Store
Memory block named DSM_local. To map the Simulink data store to an AUTOSAR-typed per-
instance memory variable, select DSM_local. Selecting a data store highlights the Data Store
Memory block in the model diagram. In the Mapped To drop-down list, select
ArTypedPerInstanceMemory.

4 AUTOSAR Component Development

4-258

To view and modify additional AUTOSAR attributes for the per-instance memory, click the icon. A
properties dialog box opens.

For each AUTOSAR ArTypedPerInstanceMemory variable, you can modify the ARXML short name,
the SwAddrMethod (AUTOSAR memory section), the calibration data access, and the calibration data

 Configure Subcomponent Data for AUTOSAR Calibration and Measurement

4-259

display format. For more information about data store code and calibration attributes, see “Map
Submodel Data Stores to AUTOSAR Variables” on page 4-69.

When you generate code from the component model that references the submodel:

• Exported ARXML files contain AR-TYPED-PER-INSTANCE-MEMORYS descriptions for submodel
data stores that you configured as ArTypedPerInstanceMemory variables, and descriptions of
the SwAddrMethods referenced in the submodel.

• Generated C code references the submodel AUTOSAR-typed per-instance memory variables.
• The model build generates macros that provide access to the submodel data for SIL and PIL

testing and calibration in the AUTOSAR run-time environment.

Map Submodel Signals and States to AUTOSAR ArTypedPerInstanceMemory Variables

If they are not already open, open the example model autosar_subcomponent, the top-level
Simulink Function, the AUTOSAR Component Designer app, and the Code Mappings editor.

In the Code Mappings editor, select the Signals/States tab. The Signals/States tab lists each
Simulink block signal and state that you can map to an AUTOSAR variable. The example submodel
has three mappable signals and one state. To map each Simulink signal and state to an an AUTOSAR-
typed per-instance memory variable, select each signal or state. Selecting a signal or state highlights
the element in the model diagram. In the Mapped To drop-down list, select
ArTypedPerInstanceMemory.

4 AUTOSAR Component Development

4-260

To make additional Simulink block signals available for mapping, use a Code Mappings editor button
or a model cue:

• In the model canvas, select one or more signals. Open the Code Mappings editor, Signals/States
tab, and click the Add button.

• In the model canvas, select a signal. Place your cursor over the displayed ellipsis and select model
cue Add selected signals to code mappings.

In the Code Mappings editor, select the signal lutOutSig. To view and modify additional AUTOSAR
attributes for the per-instance memory, click the icon. A properties dialog box opens.

 Configure Subcomponent Data for AUTOSAR Calibration and Measurement

4-261

For each AUTOSAR ArTypedPerInstanceMemory variable, you can modify the ARXML short name,
the SwAddrMethod (AUTOSAR memory section), the calibration data access, and the calibration data
display format. For more information about signal and state code and calibration attributes, see “Map
Submodel Signals and States to AUTOSAR Variables” on page 4-70.

When you generate code from the component model that references the submodel:

• Exported ARXML files contain AR-TYPED-PER-INSTANCE-MEMORYS descriptions for submodel
signals and states that you configured as ArTypedPerInstanceMemory, and descriptions of the
SwAddrMethods referenced in the submodel.

• Generated C code references the submodel AUTOSAR-typed per-instance memory variables.
• The model build generates macros that provide access to the submodel data for SIL and PIL

testing and calibration in the AUTOSAR run-time environment.

Related Links

• “Map Calibration Data for Submodels Referenced from AUTOSAR Component Models” on page 4-
65

• “Generate Submodel Data Macros for Verification and Deployment” on page 4-73
• “Configure Model Workspace Parameters as AUTOSAR Per-Instance Parameters” on page 4-213
• “Configure AUTOSAR Per-Instance Memory” on page 4-201
• Code Mappings Editor

4 AUTOSAR Component Development

4-262

Configure AUTOSAR Data for Calibration and Measurement
In Simulink, you can import and export AUTOSAR software data definition properties and modify the
properties for some forms of AUTOSAR data.

In this section...
“About Software Data Definition Properties (SwDataDefProps)” on page 4-263
“Configure SwCalibrationAccess” on page 4-263
“Configure DisplayFormat” on page 4-265
“Configure SwAddrMethod” on page 4-268
“Configure SwAlignment” on page 4-272
“Export SwImplPolicy” on page 4-272
“Export SwRecordLayout for Lookup Table Data” on page 4-272

About Software Data Definition Properties (SwDataDefProps)
Embedded Coder supports ARXML import and export of the following AUTOSAR software data
definition properties (SwDataDefProps):

• Software calibration access (SwCalibrationAccess) — Specifies calibration and measurement
tool access to a data object.

• Display format (DisplayFormat) — Specifies calibration and measurement display format for a
data object.

• Software address method (SwAddrMethod) — Specifies a method to access a data object (for
example, a measurement or calibration parameter) according to a given address. Used to group
data in memory for access by run-time calibration and measurement tools.

• Software alignment (SwAlignment) — Specifies the intended alignment of a data object within a
memory section.

• Software implementation policy (SwImplPolicy) — Specifies the implementation policy for a data
object, regarding consistency mechanisms of variables.

• Software record layout (SwRecordLayout) — Specifies how to serialize data in the memory of an
AUTOSAR ECU.

In the Simulink environment, you can directly modify software data definition properties for some
forms of AUTOSAR data. You cannot modify the SwImplPolicy or SwRecordLayout properties, but
the properties are exported in ARXML code.

For more information, see “Configure SwCalibrationAccess” on page 4-263, “Configure
DisplayFormat” on page 4-265, “Configure SwAddrMethod” on page 4-268, “Configure SwAlignment”
on page 4-272, “Export SwImplPolicy” on page 4-272, and “Export SwRecordLayout for Lookup Table
Data” on page 4-272.

Configure SwCalibrationAccess
You can specify the SwCalibrationAccess property for measurement variables, calibration
parameters, and signal and parameter data objects. The valid values are:

 Configure AUTOSAR Data for Calibration and Measurement

4-263

• ReadOnly — Data element appears in the generated description file with read access only.
• ReadWrite — Data element appears in the generated description file with both read and write

access.
• NotAccessible — Data element appears in the generated description file and is not accessible

with calibration and measurement tools.

If you open a model with signals and parameters, you can specify the SwCalibrationAccess
property in the following ways:

• “Specify SwCalibrationAccess for AUTOSAR Data Elements” on page 4-264
• “Specify Default SwCalibrationAccess for Application Data Types” on page 4-265

Specify SwCalibrationAccess for AUTOSAR Data Elements

You can use either the AUTOSAR Dictionary or MATLAB function calls to specify the
SwCalibrationAccess property for the following AUTOSAR data elements:

• Sender-receiver interface data elements
• Nonvolatile interface data elements
• Client-server arguments
• Inter-runnable variables

For example:

1 Open a model that is configured for AUTOSAR.
2 Open the AUTOSAR Dictionary. Navigate to one of the following views:

• S-R or NV interface, DataElements view
• C-S interface, Arguments view
• Atomic component, IRV view

3 Use the SwCalibrationAccess drop-down list to select the level of calibration and measurement
tool access to allow for the data element.

4 AUTOSAR Component Development

4-264

Alternatively, you can use the AUTOSAR property functions to specify the SwCalibrationAccess
property for AUTOSAR data elements. For example, the following code opens the
autosar_swc_fcncalls example model and sets calibration and measurement access to inter-
runnable variable IRV2 to ReadWrite.
hModel = 'autosar_swc_fcncalls';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel)
arProps = autosar.api.getAUTOSARProperties(hModel);
get(arProps,'/Company/Powertrain/Components/ASWC/ASWC_IB/IRV2','SwCalibrationAccess')

set(arProps,'/Company/Powertrain/Components/ASWC/ASWC_IB/IRV2','SwCalibrationAccess','ReadWrite');
get(arProps,'/Company/Powertrain/Components/ASWC/ASWC_IB/IRV2','SwCalibrationAccess')

ans =
 'ReadOnly'

ans =
 'ReadWrite'

Here is a sample call to the AUTOSAR properties set function to set SwCalibrationAccess for an
S-R interface data element in the same model.
set(arProps,'/Company/Powertrain/Interfaces/InIf/In1','SwCalibrationAccess','ReadWrite');
get(arProps,'/Company/Powertrain/Interfaces/InIf/In1','SwCalibrationAccess')

ans =
 'ReadWrite'

Specify Default SwCalibrationAccess for Application Data Types

The AUTOSAR XML options include SwCalibrationAccess DefaultValue (property
SwCalibrationAccessDefault), which defines the default SwCalibrationAccess value for
AUTOSAR application data types in your model. You can use the AUTOSAR property functions to
modify the default. For example, the following code opens the autosar_swc_fcncalls example
model and changes the default calibration and measurement access for AUTOSAR application data
types from ReadOnly to ReadWrite.
hModel = 'autosar_swc_fcncalls';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel)
arProps = autosar.api.getAUTOSARProperties(hModel);
get(arProps,'XmlOptions','SwCalibrationAccessDefault')

set(arProps,'XmlOptions','SwCalibrationAccessDefault','ReadWrite');
get(arProps,'XmlOptions','SwCalibrationAccessDefault')

ans =
 'ReadOnly'

ans =
 'ReadWrite'

Configure DisplayFormat
AUTOSAR display format specifications control the width and precision display for calibration and
measurement data. You can import and export AUTOSAR display format specifications, and edit the
specifications in Simulink. You can specify display format for the following AUTOSAR elements:

• Inter-runnable variables
• Sender-receiver interface data elements
• Client-server interface operation arguments
• CompuMethods

 Configure AUTOSAR Data for Calibration and Measurement

4-265

The display format specification is a subset of ANSI C printf specifiers, with the following form:

%[flags][width][.precision]type

Field Description
flags
(optional)

Characters specifying flags supported by AUTOSAR schemas:

• (''): Insert a space before the value.
• -: Left-justify.
• +: Display plus or minus sign, even for positive numbers.
• #:

• For types o, x, and X, display 0, 0x, or 0X prefix.
• For types e, E, and f, display decimal point even if the precision is 0.
• For types g and G, do not remove trailing zeros or decimal point.

width
(optional)

Positive integer specifying the minimum number of characters to display.

precision
(optional)

Positive integer specifying the precision to display:

• For integer type values (d, i, o, u, x, and X), specifies the minimum number of
digits.

• For types e, E, and f, specifies the number of digits to the right of the decimal
point.

• For types g and G, specifies the number of significant digits.

4 AUTOSAR Component Development

4-266

Field Description
type Characters specifying a numeric conversion type supported by AUTOSAR schemas:

• d: Signed decimal integer.
• i: Signed decimal integer.
• o: Unsigned octal integer.
• u: Unsigned decimal integer.
• x: Unsigned hexadecimal integer, using characters "abcdef".
• X: Unsigned hexadecimal integer, using characters "ABCDEF”.
• e: Signed floating-point value in exponential notation. The value has the form

[-]d.dddd e [sign]ddd.

• d is a single decimal digit.
• dddd is one or more decimal digits.
• ddd is exactly three decimal digits.
• sign is + or -.

• E: Identical to the e format except that E, rather than e, introduces the exponent.
• f: Signed floating-point value in fixed-point notation. The value has the form

[-]dddd.dddd.

• dddd is one or more decimal digits.
• The number of digits before the decimal point depends on the magnitude of

the number.
• The number of digits after the decimal point depends on the requested

precision.
• g: Signed value printed in f or e format, whichever is more compact for the

given value and precision. Trailing zeros are truncated, and the decimal point
appears only if one or more digits follow it.

• G: Identical to the g format, except that E, rather than e, introduces the
exponent (where required).

For example, the format specifier %2.1d specifies width 2, precision 1, and type signed decimal,
producing a displayed value such as 12.2.

The DisplayFormat attribute appears in dialog boxes for AUTOSAR elements to which it applies. You
can specify display format in a dialog box or with an element API that can modify attributes.
hModel = 'autosar_swc_counter';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
slMap = autosar.api.getSimulinkMapping(hModel);
mapParameter(slMap,'INC','ConstantMemory','DisplayFormat','%2.6f')

 Configure AUTOSAR Data for Calibration and Measurement

4-267

If you specify a display format, exporting ARXML code generates a corresponding DISPLAY-FORMAT
specification.

<PARAMETER-DATA-PROTOTYPE UUID="...">
 <SHORT-NAME>INC</SHORT-NAME>
 <CATEGORY>VALUE</CATEGORY>
 <SW-DATA-DEF-PROPS>
 <SW-DATA-DEF-PROPS-VARIANTS>
 <SW-DATA-DEF-PROPS-CONDITIONAL>
 <SW-CALIBRATION-ACCESS>READ-WRITE</SW-CALIBRATION-ACCESS>
 <DISPLAY-FORMAT>%2.6f</DISPLAY-FORMAT>
 <SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
 </SW-DATA-DEF-PROPS-CONDITIONAL>
 </SW-DATA-DEF-PROPS-VARIANTS>
 </SW-DATA-DEF-PROPS>
 ...
</PARAMETER-DATA-PROTOTYPE>

Configure SwAddrMethod
AUTOSAR software components use software address methods (SwAddrMethods) to group data and
functions into memory sections for access by run-time calibration and measurement tools. For a
Simulink model mapped to an AUTOSAR software component, you can associate SwAddrMethods
with these elements:

4 AUTOSAR Component Development

4-268

• Model parameter or lookup table mapped to:

• AUTOSAR constant memory
• AUTOSAR internal calibration parameter
• AUTOSAR port parameter

• Signal, state, or data store mapped to:

• AUTOSAR static memory
• AUTOSAR per-instance memory

• Model entry-point function mapped to AUTOSAR runnable
• Internal data inside a model entry-point function

To create and use SwAddrMethods in an AUTOSAR model:

1 Import SwAddrMethods from ARXML files or create SwAddrMethods in Simulink.

• To import SwAddrMethods from ARXML files, use an arxml.importer function –
createComponentAsModel or createCompositionAsModel for a new model, or
updateModel or updateAUTOSARProperties for an existing model.

• To create SwAddrMethods in an existing model, open the AUTOSAR Dictionary,

SwAddrMethods view, and click the Add button . Alternatively, use equivalent AUTOSAR
property functions. For more information, see “Create SwAddrMethods in Simulink” on page
4-270.

2 Associate SwAddrMethods with model data and functions. Open the Code Mappings editor and
select the Parameters, Data Stores, Signals/States, or Functions tab. Select an element

within that tab. To set the SwAddrMethod attribute, click the icon. Alternatively, use the
equivalent AUTOSAR map function. For more information, see “Associate SwAddrMethod with
Model Data or Function” on page 4-271.

3 Generate code for your AUTOSAR model. (This example uses a signal mapped to AUTOSAR static
memory in the model autosar_swc_counter.) In the generated files:

• Exported ARXML files contain SwAddrMethod descriptions and references.
<VARIABLE-DATA-PROTOTYPE UUID="...">
 <SHORT-NAME>SM_equal_to_count</SHORT-NAME>
 <CATEGORY>VALUE</CATEGORY>
 <SW-DATA-DEF-PROPS>
 <SW-DATA-DEF-PROPS-VARIANTS>
 <SW-DATA-DEF-PROPS-CONDITIONAL>
 <SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">
 /Company/Powertrain/DataTypes/SwAddrMethods/VAR
 </SW-ADDR-METHOD-REF>
 <SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
 <SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
 </SW-DATA-DEF-PROPS-CONDITIONAL>
 </SW-DATA-DEF-PROPS-VARIANTS>
 </SW-DATA-DEF-PROPS>
 <TYPE-TREF DEST="IMPLEMENTATION-DATA-TYPE">
 /Company/Powertrain/DataTypes/Boolean_volatile_my_qualifier</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>

• AUTOSAR-compliant C code contains comments and #define and #include statements that
provide a wrapper around data or function definitions belonging to each SwAddrMethod
memory section.
/* Static Memory for Internal Data */

/* SwAddrMethod VAR for Internal Data */

 Configure AUTOSAR Data for Calibration and Measurement

4-269

#define autosar_swc_counter_START_SEC_VAR
#include "autosar_swc_counter_MemMap.h"

volatile my_qualifier boolean SM_equal_to_count;

#define autosar_swc_conter_STOP_SEC_VAR
#include "autosar_swc_counter_MemMap.h"

• “Create SwAddrMethods in Simulink” on page 4-270
• “Associate SwAddrMethod with Model Data or Function” on page 4-271

Create SwAddrMethods in Simulink

To create SwAddrMethods in an existing model, open the AUTOSAR Dictionary, SwAddrMethods

view, and click the Add button .

Alternatively, use equivalent AUTOSAR property functions. This code adds SwAddrMethods myCODE
and myVAR to an AUTOSAR component model.

hModel = 'autosar_swc_counter';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel)
arProps = autosar.api.getAUTOSARProperties(hModel);
addPackageableElement(arProps,'SwAddrMethod',...
 '/Company/Powertrain/DataTypes/SwAddrMethods','myCODE',...
 'SectionType','Code')
swAddrPaths = find(arProps,[],'SwAddrMethod','PathType','FullyQualified',...
 'SectionType','Code')
addPackageableElement(arProps,'SwAddrMethod',...
 '/Company/Powertrain/DataTypes/SwAddrMethods','myVAR',...
 'SectionType','Var')
swAddrPaths = find(arProps,[],'SwAddrMethod','PathType','FullyQualified',...
 'SectionType','Var')

4 AUTOSAR Component Development

4-270

swAddrPaths =
 {'/Company/Powertrain/DataTypes/SwAddrMethods/CODE'}
 {'/Company/Powertrain/DataTypes/SwAddrMethods/myCODE'}

swAddrPaths =
 {'/Company/Powertrain/DataTypes/SwAddrMethods/VAR'}
 {'/Company/Powertrain/DataTypes/SwAddrMethods/myVAR'}

Associate SwAddrMethod with Model Data or Function

To associate SwAddrMethods with model data and functions, open the Code Mappings editor and
select the Parameters, Data Stores, Signals/States, or Functions tab. Select an element within

that tab. To set the SwAddrMethod attribute, click the icon. In this example, SwAddrMethod
VAR is selected for signal equal_to_count, which is mapped to AUTOSAR static memory.

Alternatively, use the equivalent AUTOSAR map function. For more information, see the reference
page for mapFunction, mapParameter, mapSignal, mapState, or mapDataStore.

 Configure AUTOSAR Data for Calibration and Measurement

4-271

Configure SwAlignment
The SwAlignment property describes the intended alignment of AUTOSAR data within a memory
section. SwAlignment defines a quantity of bits. Valid values include 8, 12, 32, UNKNOWN
(deprecated), UNSPECIFIED, and BOOLEAN. For numeric data, typical SwAlignment values are 8,
16, and 32.

If you do not define the SwAlignment property, the swBaseType size and the
memoryAllocationKeywordPolicy of the referenced SwAlignment determine the alignment.

You can use the AUTOSAR property function set to set SwAlignment for S-R interface data
elements and inter-runnable variables. For example:
interfacePath = '/A/B/C/Interfaces/If1/';
dataElementName = 'El1';
swAlignmentValue = '32';
set(dataObj,[interfacePath dataElementName],'SwAlignment',swAlignmentValue);

To support the round-trip workflow, the ARXML importer imports and preserves the SwAlignment
property for the following AUTOSAR data:

• Per-instance memory
• Software component parameters
• Parameter interface data elements
• Client-server interface operation arguments
• Static and constant memory

Export SwImplPolicy
The SwImplPolicy property specifies the implementation policy for a data element, regarding
consistency mechanisms of variables. You cannot modify the SwImplPolicy property, but the
property is set to standard or queued for AUTOSAR data in exported ARXML code. The value is set
to:

• standard for

• Per-instance memory
• Inter-runnable variables
• Software component parameters
• Parameter interface data elements
• Client-server interface operation arguments
• Static and constant memory

• standard or queued for
Sender-receiver interface data elements

Export SwRecordLayout for Lookup Table Data
AUTOSAR software components use software record layouts (SwRecordLayouts) to specify how to
serialize data in the memory of an AUTOSAR ECU. The ARXML importer imports and preserves the
SwRecordLayout property for AUTOSAR data.

4 AUTOSAR Component Development

4-272

You can import SwRecordLayouts from ARXML files in either of two ways:

• If you create your AUTOSAR model from ARXML files using importer function
createComponentAsModel, include an ARXML file that contains SwRecordLayout definitions in
the import. The imported SwRecordLayouts are preserved and later exported in ARXML code.

• If you create your AUTOSAR model in Simulink, you can import shared definitions of
SwRecordLayouts from ARXML files. Use importer function updateAUTOSARProperties. For
example:
importerObj = arxml.importer(arxmlFileName);
updateAUTOSARProperties(importerObj,modelName);

When you generate model code, the exported ARXML code contains references to the imported
read-only SwRecordLayout elements, but not their definitions.

For more information, see “Import and Reference Shared AUTOSAR Element Definitions” on page
3-29.

See Also

Related Examples
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Model AUTOSAR Calibration Parameters and Lookup Tables” on page 2-51
• “Configure AUTOSAR CompuMethods” on page 4-236
• “Configure AUTOSAR Code Generation” on page 5-7

More About
• “AUTOSAR Component Configuration” on page 4-3

 Configure AUTOSAR Data for Calibration and Measurement

4-273

Configure Lookup Tables for AUTOSAR Calibration and
Measurement

In Simulink, you can implement standard axis (STD_AXIS), common axis (COM_AXIS), and fix axis
(FIX_AXIS) lookup tables for AUTOSAR applications. AUTOSAR applications can use lookup tables in
either or both of two ways:

• Implement fast search operations.
• Support tuning of the application with calibration and measurement tools.

To model lookup tables for automotive application tuning, use the classes Simulink.LookupTable
and Simulink.Breakpoint. By creating Simulink.LookupTable and Simulink.Breakpoint
objects in the model workspace, you can store and share lookup table and breakpoint data and
configure the data for AUTOSAR code generation.

In this section...
“Configure STD_AXIS Lookup Tables by Using Lookup Table Objects” on page 4-274
“Configure COM_AXIS Lookup Tables by Using Lookup Table and Breakpoint Objects” on page 4-278
“Configure FIX_AXIS Lookup Tables by Using Simulink Parameter Objects” on page 4-283
“Configure Array Layout for Multidimensional Lookup Tables” on page 4-286
“Parameterizing Instances of Reusable Referenced Model Lookup Tables and Breakpoints” on page
4-287
“Exporting Lookup Table Constants as Record Value Specification” on page 4-290
“Exporting AdminData Record Layout Annotations” on page 4-292

Configure STD_AXIS Lookup Tables by Using Lookup Table Objects
This example shows how to create STD_AXIS lookup tables in Simulink, using
Simulink.LookupTable objects, and configure the lookup tables for AUTOSAR code generation.
The example uses the model mAutosarLutObjs.slx from matlabroot/help/toolbox/autosar/
examples. To copy the model file to your working folder, enter this MATLAB command:
copyfile(fullfile(matlabroot,'help/toolbox/autosar/examples/mAutosarLutObjs.slx'),'.')

1 Model an AUTOSAR lookup table in a STD_AXIS configuration.

a In a mapped AUTOSAR software component model, add an AUTOSAR Blockset Curve or Map
block. This example adds a Curve block.

b Open the Curve block and configure it to generate a routine from the AUTOSAR 4.0 code
replacement library (CRL). As you modify block settings, the block dialog box updates the
name of the targeted AUTOSAR routine.

4 AUTOSAR Component Development

4-274

In the block dialog box, make these selections:

• To generate a floating-point routine, select IFL (floating-point).
• In the Table Specification tab, to specify table data using a lookup table object, set

Data Specification to Lookup table object.
c In the model workspace, create a Simulink.LookupTable object and configure it to store

the lookup table data.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-275

d In the Curve block dialog box, Table Specification tab, enter the Simulink.LookupTable
object name in the Name field.

e In the block dialog box, Algorithm tab, set Integer Rounding Method to Zero. Leave
Interpolation Method set to Linear point-slope and Index Search Method set to
Linear search.

Table data appears in generated AUTOSAR C code as fields of a single structure. To control the
characteristics of the structure type, such as its name, use the properties of the object.

2 Connect the Curve or Map block.

• Add AUTOSAR operating points to the lookup tables. Connect a root-level inport to the Curve
or Map block. Alternatively, configure an input signal to the Curve or Map block with static
global memory.

• Connect an outport to the Curve or Map block.

3 In the AUTOSAR code perspective, use the Code Mappings editor to map
Simulink.LookupTable objects to AUTOSAR internal calibration parameters. In the
Parameters tab, select each Simulink.LookupTable object that you created. Map each object
to AUTOSAR parameter type ConstantMemory, SharedParameter, or Auto. To accept
software mapping defaults, specify Auto.

4 AUTOSAR Component Development

4-276

In this example, STD_AXIS lookup table object L_4_single is mapped to AUTOSAR
ConstantMemory.

4
For each parameter, if you select a parameter type other than Auto, click the icon to view or
modify other code and calibration attributes. For more information on parameter properties, see
“Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54.

5 Configure the model to generate C code based on the AUTOSAR 4.0 library. Open the
Configuration Parameters dialog box and select Code Generation > Interface. Set the Code
replacement library parameter to AUTOSAR 4.0. For more information, see “Code Generation
with AUTOSAR Code Replacement Library” on page 5-13.

6 Build the model. The generated C code contains the expected Ifl and Ifx lookup function calls
and Rte data access function calls. For example, you can search the HTML code generation
report for the Ifl or Ifx routine prefix.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-277

The generated ARXML files contain data types of category CURVE (1-D table data) and MAP (2-D
table data). The data types have the data calibration properties that you configured.

Configure COM_AXIS Lookup Tables by Using Lookup Table and
Breakpoint Objects
This example shows how to create COM_AXIS lookup tables in Simulink, using
Simulink.LookupTable and Simulink.Breakpoint objects, and configure the lookup tables for
AUTOSAR code generation. The example uses the model mAutosarLutObjs.slx from
matlabroot/help/toolbox/autosar/examples. To copy the model file to your working folder,
enter this MATLAB command:
copyfile(fullfile(matlabroot,'help/toolbox/autosar/examples/mAutosarLutObjs.slx'),'.')

In this example, to model an AUTOSAR lookup table in a COM_AXIS configuration, you pair
AUTOSAR Blockset Prelookup blocks with Curve Using Prelookup or Map Using Prelookup blocks.

1 Configure Prelookup blocks.

a In a mapped AUTOSAR software component model, add one or more AUTOSAR Blockset
Prelookup blocks. This example adds one Prelookup block.

b Open each block and configure it to generate a routine from the AUTOSAR 4.0 code
replacement library (CRL). As you modify block settings, the block updates the name of the
targeted AUTOSAR routine.

4 AUTOSAR Component Development

4-278

In the block dialog box, make these selections:

• To generate a floating-point routine, select IFL (floating-point).
• In the Table Specification tab, to specify breakpoint data using a breakpoint object, set

Breakpoints specification to Breakpoint object.
c For each breakpoint vector, in the model workspace, create and configure a

Simulink.Breakpoint object.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-279

d In the Prelookup block dialog box, Table Specification tab, enter the
Simulink.Breakpoint object name in the Name field. You can reduce memory
consumption by sharing breakpoint data between lookup tables.

e In the block dialog box, Algorithm tab, set Integer Rounding Method to Zero. Leave
Index Search Method set to Linear search.

2 Configure Curve Using Prelookup and Map Using Prelookup blocks.

a In the model, add one or more AUTOSAR Blockset Curve Using Prelookup or Map Using
Prelookup blocks. Each block immediately follows a Prelookup block with which it is paired.
This example adds one Curve Using Prelookup block.

b Open each Curve Using Prelookup or Map Using Prelookup block and configure it to
generate a routine from the AUTOSAR 4.0 code replacement library (CRL). As you modify
block settings, the block dialog box updates the name of the targeted AUTOSAR routine.

In the block dialog box, make these selections:

• To generate a floating-point routine, select IFL (floating-point).
• In the Table Specification tab, to specify table data using a lookup table object, set

Data Specification to Lookup table object.
c For each set of table data, in the model workspace, create and configure a

Simulink.LookupTable object.

4 AUTOSAR Component Development

4-280

d In each Curve Using Prelookup or Map Using Prelookup block dialog box, Table
Specification tab, enter a Simulink.LookupTable object name in the Name field.

e In the block dialog box, Algorithm tab, set Integer Rounding Method to Zero. Leave
Interpolation Method set to Linear point-slope.

Each set of table data appears in the generated C code as a separate array variable. If the table
size is tunable, each breakpoint vector appears as a structure. The structure contains a field to
store the breakpoint data and, optionally, a field to store the length of the vector. The second field
enables you to tune the effective size of the table. If the table size is not tunable, each breakpoint
vector appears as an array.

3 Connect the Prelookup, Curve Using Prelookup, and Map Using Prelookup blocks.

• Add AUTOSAR operating points to the lookup tables. Connect root-level inports to the
Prelookup blocks. Alternatively, configure input signals to the Prelookup blocks with static
global memory.

• Connect outports to the Curve Using Prelookup and Map Using Prelookup blocks.
• Connect each Prelookup block to its matched Curve Using Prelookup or Map Using Prelookup

block.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-281

4 In the AUTOSAR code perspective, use the Code Mappings editor to map
Simulink.LookupTable and Simulink.Breakpoint objects to AUTOSAR internal calibration
parameters. In the Parameters tab, select each Simulink.LookupTable and
Simulink.Breakpoint object that you created. Map each object to AUTOSAR parameter type
ConstantMemory, SharedParameter, or Auto. To accept software mapping defaults, specify
Auto.

In this example, COM_AXIS breakpoint object Bp_4_single and lookup table object
Lcom_4_single are mapped to AUTOSAR SharedParameters. All instances of the AUTOSAR
software component share the COM_AXIS parameters.

5
For each parameter, if you select a parameter type other than Auto, click the icon to view or
modify other code and calibration attributes. For more information on parameter properties, see
“Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54.

6 Configure the model to generate C code based on the AUTOSAR 4.0 library. Open the
Configuration Parameters dialog box and select Code Generation > Interface. Set the Code
replacement library parameter to AUTOSAR 4.0. For more information, see “Code Generation
with AUTOSAR Code Replacement Library” on page 5-13.

7 Build the model. The generated C code contains the expected Ifl and Ifx lookup function calls
and Rte data access function calls. For example, you can search the HTML code generation
report for the Ifl or Ifx routine prefix.

4 AUTOSAR Component Development

4-282

The generated ARXML files contain data types of category CURVE (1-D table data), MAP (2-D
table data), and COM_AXIS (axis data). The data types have the data calibration properties that
you configured.

Configure FIX_AXIS Lookup Tables by Using Simulink Parameter
Objects
This example shows how to create FIX_AXIS lookup tables in Simulink, using Simulink.Parameter
objects, and configure the lookup tables for AUTOSAR code generation.

1 Model an AUTOSAR lookup table in a FIX_AXIS configuration.

a In a mapped AUTOSAR software component model, add a Simulink 1-D Lookup Table block.

b In the model workspace, create a Simulink.Parameter object and configure it to store the
lookup table values.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-283

c Open the 1-D Lookup Table block. In the Table and Breakpoints tab, to configure the table
to fix axis, set Breakpoints specification to Even spacing.

d In the 1-D Lookup Table block dialog box, Table and breakpoints tab, enter the
Simulink.Parameter object name in the Value field.

4 AUTOSAR Component Development

4-284

e In the block dialog box, Algorithm tab, set Extrapolation Method to Clip. Enable Use
last table values for inputs at or above last breakpoint.

2 Connect an inport and outport to the 1-D Lookup Table block.
3 In the AUTOSAR code perspective, use the Code Mappings editor to map Simulink.Parameter

object to AUTOSAR internal calibration parameters. In the Parameters tab, select each
Simulink.Parameter object that you created. Map the object to AUTOSAR parameter type
ConstantMemory, SharedParameter, or Auto. To accept software mapping defaults, specify
Auto.

4
For each parameter, if you select a parameter type other than Auto, click the icon to view or
modify other code and calibration attributes. For more information on parameter properties, see
“Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-285

5 Configure the model to generate C code based on the AUTOSAR 4.0 library. Open the
Configuration Parameters dialog box and select Code Generation > Interface. Set the Code
replacement library parameter to AUTOSAR 4.0. For more information, see “Code Generation
with AUTOSAR Code Replacement Library” on page 5-13.

6 Build the model. The generated C code contains the expected Ifx lookup function call and Rte
data access function calls. For example, you can search the HTML code generation report for the
Ifx routine prefix.

The generated ARXML files contain data types of category CURVE (1-D table data). The data
types have the data calibration properties that you configured.

Note For FIX_AXIS lookup table objects, the axes values are fixed and not tunable. The table data
can be tuned.

Configure Array Layout for Multidimensional Lookup Tables
If an AUTOSAR model contains multidimensional lookup tables, you can configure the layout of
lookup table array data for code generation as column-major or row-major. In the Simulink
Configuration Parameters dialog box, Interface pane, set Array layout to Column-major (the
default) or Row-major. The array layout selection affects code generation, including C code and
exported ARXML descriptions.

If you select row-major layout, go to the Math and Data Types pane and select the configuration
option Use algorithms optimized for row-major array layout. The algorithm selection affects
simulation and code generation.

Exporting multidimensional lookup tables generates ARXML lookup table descriptions with the
SwRecordLayout category set to either COLUMN_DIR or ROW_DIR. For example, this program listing
shows the SwRecordLayout descriptions exported for an AUTOSAR model that contains a 2-
dimensional row-major lookup table. The lookup table is implemented by using an AUTOSAR Map
block.
<AR-PACKAGE>
 <SHORT-NAME>SwRecordLayouts</SHORT-NAME>
 <ELEMENTS>
 <SW-RECORD-LAYOUT UUID="...">
 <SHORT-NAME>Map_s16</SHORT-NAME>
 <SW-RECORD-LAYOUT-GROUP>
 <SHORT-LABEL>Val</SHORT-LABEL>
 <CATEGORY>ROW_DIR</CATEGORY>
 <SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
 <SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
 <SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
 <SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
 <SW-RECORD-LAYOUT-GROUP>
 <SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
 <SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
 <SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
 <SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>

4 AUTOSAR Component Development

4-286

 <SW-RECORD-LAYOUT-V>
 <SHORT-LABEL>Val</SHORT-LABEL>
 <BASE-TYPE-REF DEST="SW-BASE-TYPE">
 /DataTypes/SwBaseTypes/sint32
 </BASE-TYPE-REF>
 <SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
 <SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
 <SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
 </SW-RECORD-LAYOUT-V>
 </SW-RECORD-LAYOUT-GROUP>
 </SW-RECORD-LAYOUT-GROUP>
 </SW-RECORD-LAYOUT>
 <SW-RECORD-LAYOUT UUID="...">
 <SHORT-NAME>Distr_s8_M</SHORT-NAME>
 <SW-RECORD-LAYOUT-GROUP>
 <SHORT-LABEL>Y</SHORT-LABEL>
 <CATEGORY>INDEX_INCR</CATEGORY>
 <SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
 <SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
 <SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
 <SW-RECORD-LAYOUT-V>
 <SHORT-LABEL>VALUE</SHORT-LABEL>
 <BASE-TYPE-REF DEST="SW-BASE-TYPE">
 /DataTypes/SwBaseTypes/sint32
 </BASE-TYPE-REF>
 <SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
 <SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
 </SW-RECORD-LAYOUT-V>
 </SW-RECORD-LAYOUT-GROUP>
 </SW-RECORD-LAYOUT>
 </ELEMENTS>
</AR-PACKAGE>

Importing ARXML files with multidimensional lookup table descriptions creates Simulink lookup
tables with Array layout set to Column-major or Row-major. If the ARXML files contain only row-
major multidimensional lookup table descriptions, the ARXML importer creates Simulink lookup
tables with Array layout set to Row-major and Use algorithms optimized for row-major array
layout enabled.

Parameterizing Instances of Reusable Referenced Model Lookup
Tables and Breakpoints
In an AUTOSAR model hierarchy, you can parameterize a lookup table or breakpoint by placing it
inside a referenced model and then parameterizing the referenced model. Parameterizing a
referenced model involves configuring the referenced model to use model arguments, and then
setting model argument values in the parent model.

Parameterizing instances of reusable referenced model lookup tables allows you to place multiple
instances of lookup table sub-units in an AUTOSAR model hierarchy. You can use sub-unit level
testing with the lookup tables.

When a referenced model contains a lookup table or breakpoint, and the containing top model passes
lookup table parameter values or breakpoint object to the model arguments of the referenced model,
top-model export generates application data types for the lookup table parameters or breakpoints.

Consider this top model, which parameterizes two instances of a referenced model 2-D lookup table.
Top-model parameter LUTForInst1 is mapped to an AUTOSAR PerInstanceParameter and its
values are passed to a model argument of the first lookup table instance. Top-model parameter
LUTForInst2 is mapped to an AUTOSAR SharedParameter and its values are passed to a model
argument of the second lookup table instance.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-287

The referenced model contains the 2-D lookup table and defines instance parameter LUT_arg. For
more information about configuring instance parameters in a referenced model and specifying
instance-specific values at the Model block, see “Parameterize Instances of a Reusable Referenced
Model”.

When you build the top model, the exported ARXML defines application primitive data types
Appl_LUTForInst1 and Appl_LUTForInst2 and maps them to implementation data type
LUT_arg_Type.

4 AUTOSAR Component Development

4-288

<APPLICATION-PRIMITIVE-DATA-TYPE UUID="...">
 <SHORT-NAME>Appl_LUTForInst1</SHORT-NAME>
 <CATEGORY>MAP</CATEGORY>
 ...
</APPLICATION-PRIMITIVE-DATA-TYPE>
<APPLICATION-PRIMITIVE-DATA-TYPE UUID="...">
 <SHORT-NAME>Appl_LUTForInst2</SHORT-NAME>
 <CATEGORY>MAP</CATEGORY>
 ...
</APPLICATION-PRIMITIVE-DATA-TYPE>

<DATA-TYPE-MAP>
 <APPLICATION-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">
 /DataTypes/ApplDataTypes/Appl_LUTForInst1
 </APPLICATION-DATA-TYPE-REF>
 <IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-TYPE">
 /DataTypes/LUT_arg_Type
 </IMPLEMENTATION-DATA-TYPE-REF>
</DATA-TYPE-MAP>
<DATA-TYPE-MAP>
 <APPLICATION-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">
 /DataTypes/ApplDataTypes/Appl_LUTForInst2
 </APPLICATION-DATA-TYPE-REF>
 <IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-TYPE">
 /DataTypes/LUT_arg_Type
 </IMPLEMENTATION-DATA-TYPE-REF>
</DATA-TYPE-MAP>

The application primitive data types are then referenced by the AUTOSAR per-instance parameter
LUTForInst1 and the AUTOSAR shared parameter LUTForInst2.
<PER-INSTANCE-PARAMETERS>
 <PARAMETER-DATA-PROTOTYPE UUID="...">
 <SHORT-NAME>LUTForInst1</SHORT-NAME>
 <CATEGORY>MAP</CATEGORY>
 ...
 <TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">
 /DataTypes/ApplDataTypes/Appl_LUTForInst1
 </TYPE-TREF>
 <INIT-VALUE>
 <CONSTANT-REFERENCE>
 <SHORT-LABEL>LUTForInst1</SHORT-LABEL>
 <CONSTANT-REF DEST="CONSTANT-SPECIFICATION">
 /DataTypes/Constants/LUTForInst1
 </CONSTANT-REF>
 </CONSTANT-REFERENCE>
 </INIT-VALUE>
 </PARAMETER-DATA-PROTOTYPE>
</PER-INSTANCE-PARAMETERS>

<SHARED-PARAMETERS>
 <PARAMETER-DATA-PROTOTYPE UUID="...">
 <SHORT-NAME>LUTForInst2</SHORT-NAME>
 <CATEGORY>MAP</CATEGORY>
 ...
 <TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">
 /DataTypes/ApplDataTypes/Appl_LUTForInst2
 </TYPE-TREF>
 <INIT-VALUE>
 <CONSTANT-REFERENCE>
 <SHORT-LABEL>LUTForInst2</SHORT-LABEL>
 <CONSTANT-REF DEST="CONSTANT-SPECIFICATION">
 /DataTypes/Constants/LUTForInst2
 </CONSTANT-REF>
 </CONSTANT-REFERENCE>
 </INIT-VALUE>
 </PARAMETER-DATA-PROTOTYPE>
</SHARED-PARAMETERS>

The exported ARXML lookup table descriptions can be round-tripped between Simulink and
AUTOSAR authoring tools.

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-289

Exporting Lookup Table Constants as Record Value Specification
You can configure a model to export the lookup table constants as Application value specification or
Record value specification. Refer to the example model from “Configure STD_AXIS Lookup Tables by
Using Lookup Table Objects” on page 4-274.

By default the lookup table constants are exported as Application value specification. The generated
ARXML file contains Application value specification as shown below:

<CONSTANT-SPECIFICATION UUID="...">
 <SHORT-NAME>L_4_single</SHORT-NAME>
 <VALUE-SPEC>
 <APPLICATION-VALUE-SPECIFICATION>
 <SHORT-LABEL>L_4_single</SHORT-LABEL>
 <CATEGORY>CURVE</CATEGORY>
 <SW-AXIS-CONTS>
 <SW-AXIS-CONT>
 <CATEGORY>STD_AXIS</CATEGORY>
 <UNIT-REF DEST="UNIT">/pkg/dt/NoUnit</UNIT-REF>
 <SW-AXIS-INDEX>1</SW-AXIS-INDEX>
 <SW-ARRAYSIZE>
 <V>4</V>
 </SW-ARRAYSIZE>
 <SW-VALUES-PHYS>
 <V>1</V>
 <V>2</V>
 <V>3</V>
 <V>4</V>
 </SW-VALUES-PHYS>
 </SW-AXIS-CONT>
 </SW-AXIS-CONTS>
 <SW-VALUE-CONT>
 <UNIT-REF DEST="UNIT">/pkg/dt/NoUnit</UNIT-REF>
 <SW-ARRAYSIZE>
 <V>4</V>
 </SW-ARRAYSIZE>
 <SW-VALUES-PHYS>
 <V>10</V>
 <V>20</V>
 <V>30</V>
 <V>40</V>
 </SW-VALUES-PHYS>
 </SW-VALUE-CONT>
 </APPLICATION-VALUE-SPECIFICATION>
 </VALUE-SPEC>
</CONSTANT-SPECIFICATION>

4 AUTOSAR Component Development

4-290

To export the constants as Record value specification, open the Autosar > Autosar Dictionary and
disable the Export Lookup Table Application Value Specification option.

Alternatively use the command:
modelProperties = autosar.api.getAUTOSARProperties(<modelName>);
modelProperties.set('XmlOptions','ExportLookupTableApplicationValueSpecification',false);

Build the model. The generated ARXML contains the Record Value Specification as shown
below.
<CONSTANT-SPECIFICATION UUID="...">
 <SHORT-NAME>L_4_single</SHORT-NAME>
 <VALUE-SPEC>
 <RECORD-VALUE-SPECIFICATION>
 <SHORT-LABEL>L_4_single</SHORT-LABEL>
 <FIELDS>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Nx</SHORT-LABEL>
 <VALUE>4</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 <ARRAY-VALUE-SPECIFICATION>
 <SHORT-LABEL>Bp1</SHORT-LABEL>
 <ELEMENTS>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Bp1_rt_Array_Float_4_1</SHORT-LABEL>
 <VALUE>1</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Bp1_rt_Array_Float_4_2</SHORT-LABEL>
 <VALUE>2</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Bp1_rt_Array_Float_4_3</SHORT-LABEL>
 <VALUE>3</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Bp1_rt_Array_Float_4_4</SHORT-LABEL>
 <VALUE>4</VALUE>

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-291

 </NUMERICAL-VALUE-SPECIFICATION>
 </ELEMENTS>
 </ARRAY-VALUE-SPECIFICATION>
 <ARRAY-VALUE-SPECIFICATION>
 <SHORT-LABEL>Table</SHORT-LABEL>
 <ELEMENTS>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Table_rt_Array_Float_4_1</SHORT-LABEL>
 <VALUE>10</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Table_rt_Array_Float_4_2</SHORT-LABEL>
 <VALUE>20</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Table_rt_Array_Float_4_3</SHORT-LABEL>
 <VALUE>30</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 <NUMERICAL-VALUE-SPECIFICATION>
 <SHORT-LABEL>Table_rt_Array_Float_4_4</SHORT-LABEL>
 <VALUE>40</VALUE>
 </NUMERICAL-VALUE-SPECIFICATION>
 </ELEMENTS>
 </ARRAY-VALUE-SPECIFICATION>
 </FIELDS>
</RECORD-VALUE-SPECIFICATION>
</VALUE-SPEC>
</CONSTANT-SPECIFICATION>

Exporting AdminData Record Layout Annotations
AUTOSAR Blockset supports AdminData record layout annotations in ARXML lookup table
descriptions.

Importing ARXML lookup table and axis descriptions that contain AdminData record layout
annotations creates Simulink lookup tables and breakpoints in which the AdminData annotations
determine the order of structure elements.

Exporting lookup table AdminData is disabled by default. To enable export of AdminData, set the
API-only XML option 'ExportSwRecordLayoutAnnotationsOnAdminData' to true. For example:
hModel = 'mAutosarLutObjs';
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
open_system(hModel);
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ExportSwRecordLayoutAnnotationsOnAdminData',true);
slbuild(hModel)

When AdminData export is enabled, exporting Simulink lookup tables and breakpoints with structure
elements generates lookup table and axis ImplementationDataTypes that include structure
element AdminData annotations. For example:
<IMPLEMENTATION-DATA-TYPE UUID="...">
 <SHORT-NAME>LUT_4_single</SHORT-NAME>
 <CATEGORY>STRUCTURE</CATEGORY>
 <SUB-ELEMENTS>
 <IMPLEMENTATION-DATA-TYPE-ELEMENT UUID="...">
 <SHORT-NAME>Nx</SHORT-NAME>
 <CATEGORY>TYPE_REFERENCE</CATEGORY>
 <ADMIN-DATA>
 <SDGS>
 <SDG GID="DV:RecLayoutAnnotation">
 <SD GID="DV:Type">NO_AXIS_PTS_X</SD>
 </SDG>
 </SDGS>
 </ADMIN-DATA>
 ...
 </IMPLEMENTATION-DATA-TYPE-ELEMENT>
 <IMPLEMENTATION-DATA-TYPE-ELEMENT UUID="...">
 <SHORT-NAME>Bp1</SHORT-NAME>

4 AUTOSAR Component Development

4-292

 <CATEGORY>TYPE_REFERENCE</CATEGORY>
 <ADMIN-DATA>
 <SDGS>
 <SDG GID="DV:RecLayoutAnnotation">
 <SD GID="DV:Type">AXIS_PTS_X</SD>
 </SDG>
 </SDGS>
 </ADMIN-DATA>
 ...
 </IMPLEMENTATION-DATA-TYPE-ELEMENT>
 ...
 </SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE>

AdminData record layout annotations can be used with third-party AUTOSAR tools.

See Also
Simulink.LookupTable | Simulink.Breakpoint | Curve | Curve Using Prelookup | Map | Map
Using Prelookup | Prelookup | getParameter | mapParameter

Related Examples
• “Map Model Workspace Parameters to AUTOSAR Component Parameters” on page 4-54

More About
• “Code Generation with AUTOSAR Code Replacement Library” on page 5-13
• “Model AUTOSAR Calibration Parameters and Lookup Tables” on page 2-51

 Configure Lookup Tables for AUTOSAR Calibration and Measurement

4-293

Configure and Map AUTOSAR Component Programmatically

In Simulink, as an alternative to graphical configuration, you can programmatically configure an
AUTOSAR software component. The AUTOSAR property and map functions allow you to get, set, add,
and remove the same component properties and mapping information displayed in the AUTOSAR
Dictionary and Code Mappings editor views of the AUTOSAR component model.

In this section...
“AUTOSAR Property and Map Functions” on page 4-294
“Tree View of AUTOSAR Configuration” on page 4-294
“Properties of AUTOSAR Elements” on page 4-296
“Specify AUTOSAR Element Location” on page 4-298

AUTOSAR Property and Map Functions
You can use AUTOSAR property and map functions to programmatically configure the Simulink
representation of an AUTOSAR software component. For example:

• Use the AUTOSAR property functions to add AUTOSAR elements, find elements, get and set
properties of elements, delete elements, and define ARXML packaging of elements.

• Use the AUTOSAR map functions to map Simulink model elements to AUTOSAR elements and
return AUTOSAR mapping information for model elements.

The AUTOSAR property and map functions also validate syntax and semantics for requested
AUTOSAR property and mapping changes.

For a complete list of property and map functions, see the functions listed for “Component
Development”.

For example scripts, see “AUTOSAR Property and Map Function Examples” on page 4-300.

Note For information about functions for creating or importing an AUTOSAR software component,
see “Component Creation”.

Tree View of AUTOSAR Configuration
The following tree view of an AUTOSAR configuration shows the types of AUTOSAR elements to
which you can apply AUTOSAR property and map functions. This view corresponds with the
AUTOSAR Dictionary tree display, but includes elements that might not be present in every
configuration. Names shown in italics are user-selected.

• AUTOSAR

• AtomicComponents

• MyComponent

• ReceiverPorts

4 AUTOSAR Component Development

4-294

• SenderPorts
• SenderReceiverPorts
• ModeReceiverPorts
• ModeSenderPorts
• ClientPorts
• ServerPorts
• NvReceiverPorts
• NvSenderPorts
• NvSenderReceiverPorts
• ParameterReceiverPorts
• TriggerReceiverPorts
• Runnables
• IRV
• Parameters

• S-R Interfaces

• SRInterface1

• DataElements
• M-S Interfaces

• MSInterface1
• C-S Interfaces

• CSInterface1

• Operations

• operation1

• Arguments
• NV Interfaces

• NVInterface1

• DataElements
• Parameter Interfaces

• ParameterInterface1

• DataElements
• Trigger Interfaces

• TriggerInterface1

• Triggers
• CompuMethods
• XML Options

 Configure and Map AUTOSAR Component Programmatically

4-295

Properties of AUTOSAR Elements
The following table lists properties that are associated with AUTOSAR elements.

AUTOSAR Element Class Properties
AtomicComponent • ReceiverPorts (add/delete)

• SenderPorts (add/delete)
• SenderReceiverPorts (add/delete)
• ModeReceiverPorts (add/delete)
• ClientPorts (add/delete)
• ServerPorts (add/delete)
• NvReceiverPorts (add/delete)
• NvSenderPorts (add/delete)
• NvSenderReceiverPorts (add/delete)
• ParameterReceiverPorts (add/delete)
• TriggerReceiverPorts (add/delete)
• Behavior (add/delete)
• Kind
• Name

ApplicationComponentBehavior • Runnables (add/delete)
• Events (add/delete)
• PIM (add/delete)
• IRV (add/delete)
• Parameters (add/delete)
• IncludedDataTypeSets
• DataTypeMapping
• Name

DataReceiverPort
DataSenderPort
DataSenderReceiverPort
ClientPort
ServerPort
ModeReceiverPort
NvDataReceiverPort
NvDataSenderPort
NvDataSenderReceiverPort
ParameterReceiverPort
TriggerReceiverPort

• Interface
• Name

Runnable • symbol
• canBeInvokedConcurrently
• SwAddrMethod
• Name

4 AUTOSAR Component Development

4-296

AUTOSAR Element Class Properties
TimingEvent • Period

• StartOnEvent
• DisabledMode
• Name

DataReceivedEvent
DataReceiveErrorEvent
OperationInvokedEvent

• Trigger
• StartOnEvent
• DisabledMode
• Name

ModeSwitchEvent • Trigger
• Activation
• StartOnEvent
• DisabledMode
• Name

InitEvent • StartOnEvent
• Name

IrvData • Type
• SwAddrMethod
• SwCalibrationAccess
• DisplayFormat
• SwAlignment
• Name

ParameterData • Type
• SwAddrMethod
• SwCalibrationAccess
• DisplayFormat
• SwAlignment
• Kind
• Name

SenderReceiverInterface
NvDataInterface
ParameterInterface

• DataElements (add/delete)
• IsService
• Name

FlowData • Type
• SwAddrMethod
• SwCalibrationAccess
• DisplayFormat
• SwAlignment
• Name

 Configure and Map AUTOSAR Component Programmatically

4-297

AUTOSAR Element Class Properties
ModeSwitchInterface • ModeGroup (add/delete)

• IsService
• Name

ModeDeclarationGroupElement • ModeGroup
• SwCalibrationAccess
• Name

ClientServerInterface • Operations (add/delete)
• IsService
• Name

TriggerInterface • Triggers (add/delete)
• IsService
• Name

Specify AUTOSAR Element Location
The AUTOSAR property functions typically require you to specify the name and location of an
element. The location of an AUTOSAR element within a hierarchy of AUTOSAR packages and objects
can be uniquely specified using a fully qualified path. A fully qualified path might include a package
hierarchy and the element location within the object hierarchy, for example:
/pkgLevel1/pkgLevel2/pkgLevel3/grandParentName/parentName/childName

For AUTOSAR property functions other than addPackageableElement, you can specify a partially-
qualified path that does not include the package hierarchy, for example:
grandParentName/parentName/childName

The following code sets the IsService property for the Sender-Receiver Interface located at path
Interface1 in the example model autosar_swc_expfcns to true. In this case, specifying the
name Interface1 is enough to locate the element.
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'Interface1','IsService',true);

Here is the resulting display in the S-R Interfaces view in the AUTOSAR Dictionary.

If you added a Sender-Receiver Interface to a component package, you would specify a fully qualified
path, for example:

4 AUTOSAR Component Development

4-298

hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
arProps = autosar.api.getAUTOSARProperties(hModel);
addPackageableElement(arProps,'SenderReceiverInterface','/pkg/if','Interface3',...
 'IsService',true);

A potential advantage of using a partially qualified path rather than a fully-qualified path is that it is
easier to construct a partially qualified path from looking at the AUTOSAR Dictionary view of the
AUTOSAR component. A potential disadvantage is that a partially qualified path could refer to more
than one element in the AUTOSAR configuration. For example, the path s/r conceivably might
designate both a data element of a Sender-Receiver Interface and a runnable of a component. When a
conflict occurs, the software displays an error and lists the fully-qualified paths.

Most AUTOSAR elements have properties that are made up of multiple parts (composite). For
example, an atomic software component has composite properties such as ReceiverPorts,
SenderPorts, and InternalBehavior. For elements that have composite properties that you can
manipulate, such as property ReceiverPorts of a component, child elements are named and are
uniquely defined within the parent element. To locate a child element within a composite property,
use the parent element path and the child name, without the property name. For example, if the
qualified path of a parent atomic software component is /A/B/SWC, and a child receiver port is
named RPort1, the location of the receiver port is /A/B/SWC/RPort1.

 Configure and Map AUTOSAR Component Programmatically

4-299

AUTOSAR Property and Map Function Examples
After creating a Simulink model representation of an AUTOSAR software component, you refine the
AUTOSAR configuration. You can refine the AUTOSAR configuration graphically, using the AUTOSAR
Dictionary and the Code Mappings editor, or programmatically, using the AUTOSAR property and
map functions.

This topic provides examples of using AUTOSAR property and map functions to programmatically
refine an AUTOSAR configuration. The examples assume that you have created a Simulink model with
an initial AUTOSAR configuration, as described in “Component Creation”. (To graphically refine an
AUTOSAR configuration, see “AUTOSAR Component Configuration” on page 4-3.)

Here is representative ordering of programmatic configuration tasks.

1 “Configure AUTOSAR Software Component” on page 4-301

a “Configure AUTOSAR Software Component Name and Type” on page 4-301
b “Configure AUTOSAR Ports” on page 4-301
c “Configure AUTOSAR Runnables and Events” on page 4-304
d “Configure AUTOSAR Inter-Runnable Variables” on page 4-308

2 “Configure AUTOSAR Interfaces” on page 4-310

a “Configure AUTOSAR Sender-Receiver Interfaces” on page 4-310
b “Configure AUTOSAR Client-Server Interfaces” on page 4-312
c “Configure AUTOSAR Mode-Switch Interfaces” on page 4-314

3 “Configure AUTOSAR XML Export” on page 4-316

For a list of AUTOSAR property and map functions, see the Functions list on the “AUTOSAR
Programmatic Interfaces” page.

The examples use a function call format in which a handle to AUTOSAR properties or mapping
information is passed as the first call argument:
arProps = autosar.api.getAUTOSARProperties(hModel);
swc = get(arProps,'XmlOptions','ComponentQualifiedName');

The same calls can be coded in a method call format. The formats are interchangeable. For example:
arProps = autosar.api.getAUTOSARProperties(hModel);
swc = arProps.get('XmlOptions','ComponentQualifiedName');

While configuring a model for AUTOSAR code generation, use the following functions to update and
validate AUTOSAR model configurations:

• autosar.api.syncModel — Update Simulink to AUTOSAR mapping of specified model with
modifications to Simulink entry-point functions, data transfers, and function callers.

• autosar.api.validateModel — Validate AUTOSAR properties and Simulink to AUTOSAR
mapping of specified model.

The functions are equivalent to using the Update and Validate buttons in the Code Mappings
editor.

4 AUTOSAR Component Development

4-300

Configure AUTOSAR Software Component
• “Configure AUTOSAR Software Component Name and Type” on page 4-301
• “Configure AUTOSAR Ports” on page 4-301
• “Configure AUTOSAR Runnables and Events” on page 4-304
• “Configure AUTOSAR Inter-Runnable Variables” on page 4-308

Configure AUTOSAR Software Component Name and Type

This example:

1 Opens a model.
2 Finds AUTOSAR software components.
3 Loops through components and lists property values.
4 Modifies the name and kind properties for a component.
% Open model
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Find AUTOSAR software components
aswcPaths = find(arProps,[],'AtomicComponent','PathType','FullyQualified');

% Loop through components and list Name and Kind property values
for ii=1:length(aswcPaths)
 aswcPath = aswcPaths{ii};
 swcName = get(arProps,aswcPath,'Name');
 swcKind = get(arProps,aswcPath,'Kind'); % Application, SensorActuator, etc.
 fprintf('Component %s: Name %s, Kind %s\n',aswcPath,swcName,swcKind);
end

Component /pkg/swc/ASWC: Name ASWC, Kind Application

% Modify component Name and Kind
aswcName = 'mySwc';
aswcKind = 'SensorActuator';
set(arProps,aswcPaths{1},'Name',aswcName);
aswcPaths = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
set(arProps,aswcPaths{1},'Kind',aswcKind);
swcName = get(arProps,aswcPaths{1},'Name');
swcKind = get(arProps,aswcPaths{1},'Kind');
fprintf('Component %s: Name %s, Kind %s\n',aswcPaths{1},swcName,swcKind);

Component /pkg/swc/mySwc: Name mySwc, Kind SensorActuator

Configure AUTOSAR Ports

There are three types of AUTOSAR ports:

• Require (In)
• Provide (Out)
• Combined Provide-Require (InOut)

AUTOSAR ports can reference the following kinds of AUTOSAR communication interfaces:

• Sender-Receiver
• Client-Server
• Mode-Switch

 AUTOSAR Property and Map Function Examples

4-301

The properties and mapping that you can set for an AUTOSAR port vary according to the type of
interface it references. These examples show how to use the AUTOSAR property and map functions to
configure AUTOSAR ports for each type of interface.

• “Configure and Map Sender-Receiver Ports” on page 4-302
• “Configure Client-Server Ports” on page 4-303
• “Configure and Map Mode Receiver Ports” on page 4-303

Configure and Map Sender-Receiver Ports

This example:

1 Opens a model.
2 Finds AUTOSAR sender or receiver ports.
3 Loops through the ports and lists associated sender-receiver interfaces.
4 Modifies the associated interface for a port.
5 Maps a Simulink inport to an AUTOSAR receiver port.

See also “Configure AUTOSAR Sender-Receiver Interfaces” on page 4-310.
% Open model
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Find AUTOSAR ports - specify DataReceiverPort, DataSenderPort, or DataSenderReceiverPort
arPortType = 'DataReceiverPort';
aswcPath = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
rPorts=find(arProps,aswcPath{1},arPortType,'PathType','FullyQualified')

rPorts =
 {'/pkg/swc/ASWC/RPort'}

% Loop through ports and list their associated interfaces
for ii=1:length(rPorts)
 rPort = rPorts{ii};
 portIf = get(arProps,rPort,'Interface');
 fprintf('Port %s has S-R interface %s\n',rPort,portIf);
end

Port /pkg/swc/ASWC/RPort has S-R interface Interface1

% Set Interface property for AUTOSAR port
rPort = '/pkg/swc/ASWC/RPort';
set(arProps,rPort,'Interface','Interface2')
portIf = get(arProps,rPort,'Interface');
fprintf('Port %s has S-R interface %s\n',rPort,portIf);

Port /pkg/swc/ASWC/RPort has S-R interface Interface2

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Get AUTOSAR mapping info for Simulink inport
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'RPort_DE2')

arPortName =
 'RPort'

arDataElementName =
 0×0 empty char array

arDataAccessMode =
 'ImplicitReceive'

% Map Simulink inport to AUTOSAR port, data element, and data access mode
mapInport(slMap,'RPort_DE2','RPort','DE2','ExplicitReceive')
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'RPort_DE2')

4 AUTOSAR Component Development

4-302

arPortName =
RPort

arDataElementName =
DE2

arDataAccessMode =
ExplicitReceive

Configure Client-Server Ports

This example:

1 Opens a model.
2 Finds AUTOSAR client or server ports.
3 Loops through the ports and lists associated client-server interfaces.
4 Modifies the associated interface for a port.

See also “Configure AUTOSAR Client-Server Interfaces” on page 4-312.
% Open model
hModel = 'mControllerWithInterface_server';
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Find AUTOSAR ports - specify ServerPort or ClientPort
arPortType = 'ServerPort';
aswcPath = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
sPorts=find(arProps,aswcPath{1},arPortType,'PathType','FullyQualified');

% Loop through ports and list their associated interfaces
for ii=1:length(sPorts)
 sPort = sPorts{ii};
 portIf = get(arProps,sPort,'Interface');
 fprintf('Port %s has C-S interface %s\n',sPort,portIf);
end

Port /pkg/swc/SWC_Controller/sPort has C-S interface CsIf1

% Set Interface property for AUTOSAR port
set(arProps,sPorts{1},'Interface','CsIf2')
portIf = get(arProps,sPorts{1},'Interface');
fprintf('Port %s has C-S interface %s\n',sPorts{1},portIf);

Port /pkg/swc/SWC_Controller/sPort has C-S interface CsIf2

Configure and Map Mode Receiver Ports

This example:

1 Opens a model.
2 Finds AUTOSAR mode receiver ports.
3 Loops through the ports and lists associated mode-switch interfaces.
4 Modifies the associated interface for a port.
5 Maps a Simulink inport to an AUTOSAR mode receiver port.

See also “Configure AUTOSAR Mode-Switch Interfaces” on page 4-314.
% Add path to model and mode definition files and open model
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
hModel = 'mAutosarMsConfigAfter';
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

 AUTOSAR Property and Map Function Examples

4-303

% Find AUTOSAR mode receiver ports
arPortType = 'ModeReceiverPort';
aswcPath = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
mrPorts=find(arProps,aswcPath{1},arPortType,'PathType','FullyQualified');

% Loop through ports and list their associated interfaces
for ii=1:length(mrPorts)
 mrPort = mrPorts{ii};
 portIf = get(arProps,mrPort,'Interface');
 fprintf('Port %s has M-S interface %s\n',mrPort,portIf);
end

Port /pkg/swc/ASWC/myMRPort has M-S interface myMsIf

% Set Interface property for AUTOSAR port
set(arProps,mrPorts{1},'Interface','MsIf2')
portIf = get(arProps,mrPort,'Interface');
fprintf('Port %s has M-S interface %s\n',mrPorts{1},portIf);

Port /pkg/swc/ASWC/myMRPort has M-S interface MsIf2

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Get AUTOSAR mapping info for Simulink inport
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'MRPort')

arPortName =
 'myMRPort'

arDataElementName =
 0×0 empty char array

arDataAccessMode =
 'ModeReceive'

% Map Simulink inport to AUTOSAR port, mode group, and data access mode
mapInport(slMap,'MRPort','myMRPort','mdgModes','ModeReceive')
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'MRPort')

arPortName =
 'myMRPort'

arDataElementName =
 'mdgModes'

arDataAccessMode =
 'ModeReceive'

Configure AUTOSAR Runnables and Events

The behavior of an AUTOSAR software component is implemented by one or more runnables. An
AUTOSAR runnable is a schedulable entity that is directly or indirectly scheduled by the underlying
AUTOSAR operating system. Each runnable is triggered by RTEEvents, events generated by the
AUTOSAR run-time environment (RTE). For each runnable, you configure an event to which it
responds. Here are examples of AUTOSAR events to which runnables respond.

• TimingEvent — Triggers a periodic runnable.
• DataReceivedEvent or DataReceiveErrorEvent — Triggers a runnable with a receiver port

that is participating in sender-receiver communication.
• OperationInvokedEvent — Triggers a runnable with a server port that is participating in

client-server communication.
• ModeSwitchEvent — Triggers a runnable with a mode receiver port that is participating in

mode-switch communication.
• InitEvent (AUTOSAR schema 4.1 or higher) — Triggers a runnable that performs component

initialization.
• ExternalTriggerOccurredEvent — Triggers a runnable with a trigger receiver port that is

participating in external trigger event communication.

4 AUTOSAR Component Development

4-304

• “Configure AUTOSAR TimingEvent for Periodic Runnable” on page 4-305
• “Configure and Map Runnables” on page 4-306
• “Configure Events for Runnable Activation” on page 4-306
• “Gather Information for AUTOSAR Custom Scheduler Script” on page 4-307

Configure AUTOSAR TimingEvent for Periodic Runnable

This example:

1 Opens a model.
2 Finds AUTOSAR runnables.
3 Loops through runnables and lists properties.
4 Modifies the name and symbol for an AUTOSAR periodic runnable.
5 Loops through AUTOSAR timing events and lists associated runnables.
6 Renames an AUTOSAR timing event.
7 Maps a Simulink entry-point function to an AUTOSAR periodic runnable.
% Open model
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Find AUTOSAR runnables
swc = get(arProps,'XmlOptions','ComponentQualifiedName');
ib = get(arProps,swc,'Behavior');
runnables = find(arProps,ib,'Runnable','PathType','FullyQualified');
runnables{2}

ans =
 '/pkg/swc/ASWC/IB/Runnable1'

% Loop through runnables and list property values
for ii=1:length(runnables)
 runnable = runnables{ii};
 rnName = get(arProps,runnable,'Name');
 rnSymbol = get(arProps,runnable,'symbol');
 rnCBIC = get(arProps,runnable,'canBeInvokedConcurrently');
 fprintf('Runnable %s: symbol %s, canBeInvokedConcurrently %u\n',...
 rnName,rnSymbol,rnCBIC);
end

Runnable Runnable_Init: symbol Runnable_Init, canBeInvokedConcurrently 0
Runnable Runnable1: symbol Runnable1, canBeInvokedConcurrently 0
Runnable Runnable2: symbol Runnable2, canBeInvokedConcurrently 0
Runnable Runnable3: symbol Runnable3, canBeInvokedConcurrently 0

% Modify Runnable1 name and symbol
set(arProps,runnables{2},'Name','myRunnable','symbol','myAlgorithm');
runnables = find(arProps,ib,'Runnable','PathType','FullyQualified');
rnName = get(arProps,runnables{2},'Name');
rnSymbol = get(arProps,runnables{2},'symbol');
rnCBIC = get(arProps,runnables{2},'canBeInvokedConcurrently');
fprintf('Runnable %s: symbol %s, canBeInvokedConcurrently %u\n',...
 rnName,rnSymbol,rnCBIC);

Runnable myRunnable: symbol myAlgorithm, canBeInvokedConcurrently 0

% Loop through AUTOSAR timing events and list runnable associations
events = find(arProps,ib,'TimingEvent','PathType','FullyQualified');
for ii=1:length(events)
 event = events{ii};
 eventStartOn = get(arProps,event,'StartOnEvent');
 fprintf('AUTOSAR event %s triggers %s\n',event,eventStartOn);
end

AUTOSAR event /pkg/swc/ASWC/IB/Event_t_1tic_A triggers ASWC/IB/myRunnable
AUTOSAR event /pkg/swc/ASWC/IB/Event_t_1tic_B triggers ASWC/IB/Runnable2
AUTOSAR event /pkg/swc/ASWC/IB/Event_t_10tic triggers ASWC/IB/Runnable3

 AUTOSAR Property and Map Function Examples

4-305

% Modify AUTOSAR event name
set(arProps,events{1},'Name','myEvent');
events = find(arProps,ib,'TimingEvent','PathType','FullyQualified');
eventStartOn = get(arProps,events{1},'StartOnEvent');
fprintf('AUTOSAR event %s triggers %s\n',events{1},eventStartOn);

AUTOSAR event /pkg/swc/ASWC/IB/myEvent triggers ASWC/IB/myRunnable

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map Simulink exported function Runnable1 to renamed AUTOSAR runnable
mapFunction(slMap,'Runnable1','myRunnable');
arRunnableName = getFunction(slMap,'Runnable1')

arRunnableName =
 'myRunnable'

Configure and Map Runnables

This example:

1 Opens a model.
2 Adds AUTOSAR initialization and periodic runnables to the model.
3 Adds a timing event to the periodic runnable.
4 Maps Simulink initialization and step functions to the AUTOSAR runnables.

See also “Configure Events for Runnable Activation” on page 4-306.
% Open model
hModel = 'autosar_swc_counter';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Add AUTOSAR initialization and periodic runnables
initRunnable = 'myInitRunnable';
periodicRunnable = 'myPeriodicRunnable';
swc = get(arProps,'XmlOptions','ComponentQualifiedName')
ib = get(arProps,swc,'Behavior')
add(arProps,ib,'Runnables',initRunnable);
add(arProps,ib,'Runnables',periodicRunnable);

% Add AUTOSAR timing event
eventName = 'myPeriodicEvent';
add(arProps,ib,'Events',eventName,'Category','TimingEvent','Period',1,...
 'StartOnEvent',[ib '/' periodicRunnable]);

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map AUTOSAR runnables to Simulink initialize and step functions
mapFunction(slMap,'InitializeFunction',initRunnable);
mapFunction(slMap,'StepFunction',periodicRunnable);

% To pass validation, remove redundant initialize and step runnables in AUTOSAR configuration
runnables = get(arProps,ib,'Runnables');
delete(arProps,[ib,'/Runnable_Init']);
delete(arProps,[ib,'/Runnable_Step']);
runnables = get(arProps,ib,'Runnables')

swc =
 '/Company/Powertrain/Components/autosar_swc_counter'

ib =
 'autosar_swc_counter/ASWC_IB'

runnables =
 {'autosar_swc_counter/ASWC_IB/myInitRunnable'}
 {'autosar_swc_counter/ASWC_IB/myPeriodicRunnable'}

Configure Events for Runnable Activation

This example shows the property function syntax for adding an AUTOSAR TimingEvent,
DataReceivedEvent, and DataReceiveErrorEvent to a runnable in a model. For a

4 AUTOSAR Component Development

4-306

DataReceivedEvent or DataReceiveErrorEvent, you specify a trigger. The trigger name
includes the name of the AUTOSAR receiver port and data element that receives the event, for
example, 'RPort.DE1'.

For OperationInvokedEvent syntax, see “Configure AUTOSAR Client-Server Interfaces” on page
4-312.

For ModeSwitchEvent syntax, see “Configure AUTOSAR Mode-Switch Interfaces” on page 4-314.
% Open model
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Specify AUTOSAR runnable to which to add event
swc = get(arProps,'XmlOptions','ComponentQualifiedName')
ib = get(arProps,swc,'Behavior')
runnables = get(arProps,ib,'Runnables')
runnable = 'Runnable1';

% Add AUTOSAR timing event
timingEventName = 'myTimingEvent';
add(arProps,ib,'Events',timingEventName,'Category','TimingEvent',...
 'Period',1,'StartOnEvent',[ib '/' runnable]);

% Add AUTOSAR data received event
drEventName = 'myDREvent';
add(arProps,ib,'Events',drEventName,'Category','DataReceivedEvent',...
 'Trigger','RPort.DE1','StartOnEvent',[ib '/' runnable]);

% Add AUTOSAR data receive error event
dreEventName = 'myDREEvent';
add(arProps,ib,'Events',dreEventName,'Category','DataReceiveErrorEvent',...
 'Trigger','RPort.DE1','StartOnEvent',[ib '/' runnable]);

% To pass validation, remove redundant timing event in AUTOSAR configuration
events = get(arProps,ib,'Events');
delete(arProps,[ib,'/Event_t_1tic_A'])
events = get(arProps,ib,'Events')

swc =
 '/pkg/swc/ASWC'

ib =
 'ASWC/IB'

runnables =
 1×4 cell array
 {'ASWC/IB/Runnable_Init'} {'ASWC/IB/Runnable1'}
 {'ASWC/IB/Runnable2'} {'ASWC/IB/Runnable3'}

events =
 1×5 cell array
 {'ASWC/IB/Event_t_1tic_B'} {'ASWC/IB/Event_t_10tic'} {'ASWC/IB/myTimingEvent'}
 {'ASWC/IB/myDREvent'} {'ASWC/IB/myDREEvent'}

Gather Information for AUTOSAR Custom Scheduler Script

This example:

1 Loops through events and runnables in an open model.
2 For each event or runnable, extracts information to use with a custom scheduler.

hModel specifies the name of an open AUTOSAR model.
% Example of how to extract timing information for runnables
% to prepare for hooking up a custom scheduler

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

 AUTOSAR Property and Map Function Examples

4-307

swc = get(arProps,'XmlOptions','ComponentQualifiedName');

% Get AUTOSAR internal behavior
ib = get(arProps,swc,'Behavior');

% Get AUTOSAR events and runnables
events = get(arProps,ib,'Events');
runnables = get(arProps,ib,'Runnables');

% Loop through events
for ii=1:length(events)
 event = events{ii};
 category = get(arProps,event,'Category');

 switch category
 case 'TimingEvent'
 runnablePath = get(arProps,event,'StartOnEvent');
 period = get(arProps,event,'Period');
 eventName = get(arProps,event,'Name');
 runnableName = get(arProps,runnablePath,'Name');
 fprintf('Event %s triggers runnable %s with period %g\n',eventName,runnableName,period);
 otherwise
 % Not interested in other events
 end
end

% Loop through runnables
for ii=1:length(runnables)
 runnable = runnables{ii};
 runnableName = get(arProps,runnable,'Name');
 runnableSymbol = get(arProps,runnable,'symbol');
 fprintf('Runnable %s has symbol %s\n',runnableName,runnableSymbol);
end

Running the example code on the example model autosar_swc_expfcns generates the following
output:
Event Event_t_1tic_A triggers runnable Runnable1 with period 1
Event Event_t_1tic_B triggers runnable Runnable2 with period 1
Event Event_t_10tic triggers runnable Runnable3 with period 10
Runnable Runnable_Init has symbol Runnable_Init
Runnable Runnable1 has symbol Runnable1
Runnable Runnable2 has symbol Runnable2
Runnable Runnable3 has symbol Runnable3

Running the example code on the example model matlabroot/help/toolbox/autosar/
examples/mMultitasking_4rates.slx generates the following output:
Event Event_Runnable_Step triggers runnable Runnable_Step with period 1
Event Event_Runnable_Step1 triggers runnable Runnable_Step1 with period 2
Event Event_Runnable_Step2 triggers runnable Runnable_Step2 with period 4
Event Event_Runnable_Step3 triggers runnable Runnable_Step3 with period 8
Runnable Runnable_Init has symbol Runnable_Init
Runnable Runnable_Step has symbol Runnable_Step
Runnable Runnable_Step1 has symbol Runnable_Step1
Runnable Runnable_Step2 has symbol Runnable_Step2
Runnable Runnable_Step3 has symbol Runnable_Step3

Configure AUTOSAR Inter-Runnable Variables

In an AUTOSAR software component with multiple runnables, inter-runnable variables (IRVs) are
used to communicate data between runnables. In Simulink, you model IRVs using data transfer lines
that connect subsystems. In an application with multiple rates, the data transfer lines might include
Rate Transition blocks to handle transitions between differing rates.

These examples show how to use the AUTOSAR property and map functions to configure AUTOSAR
IRVs without or with rate transitions.

• “Configure Inter-Runnable Variable for Data Transfer Line” on page 4-309
• “Configure Inter-Runnable Variable for Data Transfer with Rate Transition” on page 4-309

4 AUTOSAR Component Development

4-308

Configure Inter-Runnable Variable for Data Transfer Line

This example:

1 Opens a model.
2 Adds an AUTOSAR inter-runnable variable (IRV) to the model.
3 Maps a Simulink data transfer to the IRV.
% Open model
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Get AUTOSAR internal behavior and add IRV myIrv with SwCalibrationAccess ReadWrite
irvName = 'myIrv';
swCalibValue = 'ReadWrite';
swc = get(arProps,'XmlOptions','ComponentQualifiedName')
ib = get(arProps,swc,'Behavior')
irvs = get(arProps,ib,'IRV')
add(arProps,ib,'IRV',irvName,'SwCalibrationAccess',swCalibValue);
irvs = get(arProps,ib,'IRV');

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map Simulink signal irv1 to AUTOSAR IRV myIrv with access mode Explicit
irvAccess = 'Explicit';
[arIrvName,arDataAccessMode] = getDataTransfer(slMap,'irv1');
mapDataTransfer(slMap,'irv1',irvName,irvAccess);
[arIrvName,arDataAccessMode] = getDataTransfer(slMap,'irv1')

% To pass validation, remove redundant IRV in AUTOSAR configuration
irvs = get(arProps,ib,'IRV');
delete(arProps,[ib,'/IRV1'])
irvs = get(arProps,ib,'IRV')

swc =
 '/pkg/swc/ASWC'

ib =
 'ASWC/IB'

irvs =
 {'ASWC/IB/IRV1'} {'ASWC/IB/IRV2'}
 {'ASWC/IB/IRV3'} {'ASWC/IB/IRV4'}

arIrvName =
 'myIrv'

arDataAccessMode =
 'Explicit'

irvs =
 {'ASWC/IB/IRV2'} {'ASWC/IB/IRV3'}
 {'ASWC/IB/IRV4'} {'ASWC/IB/myIrv'}

Configure Inter-Runnable Variable for Data Transfer with Rate Transition

This example:

1 Opens a model with multiple rates.
2 Adds an AUTOSAR inter-runnable variable (IRV) to the model.
3 Maps a Simulink Rate Transition block to the IRV.
% Open model
hModel = 'mMultitasking_4rates';
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
open_system(hModel);

% Use AUTOSAR property functions

 AUTOSAR Property and Map Function Examples

4-309

arProps = autosar.api.getAUTOSARProperties(hModel);

% Get AUTOSAR internal behavior and add IRV myIrv with SwCalibrationAccess ReadWrite
irvName = 'myIrv';
swCalibValue = 'ReadWrite';
swc = get(arProps,'XmlOptions','ComponentQualifiedName')
ib = get(arProps,swc,'Behavior')
irvs = get(arProps,ib,'IRV')
add(arProps,ib,'IRV',irvName,'SwCalibrationAccess',swCalibValue);
irvs = get(arProps,ib,'IRV');

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map Simulink RT block RateTransition2 to AUTOSAR IRV myIrv with access mode Explicit
irvAccess = 'Explicit';
[arIrvName,arDataAccessMode] = getDataTransfer(slMap,'mMultitasking_4rates/RateTransition2');
mapDataTransfer(slMap,'mMultitasking_4rates/RateTransition2',irvName,irvAccess);
[arIrvName,arDataAccessMode] = getDataTransfer(slMap,'mMultitasking_4rates/RateTransition2')

% To pass validation, remove redundant IRV in AUTOSAR configuration
irvs = get(arProps,ib,'IRV');
delete(arProps,[ib,'/IRV3'])
irvs = get(arProps,ib,'IRV')

swc =
 '/mMultitasking_4rates_pkg/mMultitasking_4rates_swc/mMultitasking_4rates'

ib =
 'mMultitasking_4rates/Behavior'

irvs =
 {'mMultitasking_4rates/Behavior/IRV1'} {'mMultitasking_4rates/Behavior/IRV2'}
 {'mMultitasking_4rates/Behavior/IRV3'}

arIrvName =
 'myIrv'

arDataAccessMode =
 'Explicit'

irvs =
 {'mMultitasking_4rates/Behavior/IRV1'} {'mMultitasking_4rates/Behavior/IRV2'}
 {'mMultitasking_4rates/Behavior/myIrv'}

Configure AUTOSAR Interfaces
AUTOSAR software components can use ports and interfaces to implement the following forms of
communication:

• Sender-receiver (S-R)
• Client-server (C-S)
• Mode-switch (M-S)
• Nonvolatile (NV) data

These examples show how to use AUTOSAR property and map functions to configure AUTOSAR
ports, interfaces, and related elements for S-R, C-S, and M-S communication. The techniques shown
for configuring S-R ports and interfaces also broadly apply to NV communication.

• “Configure AUTOSAR Sender-Receiver Interfaces” on page 4-310
• “Configure AUTOSAR Client-Server Interfaces” on page 4-312
• “Configure AUTOSAR Mode-Switch Interfaces” on page 4-314

Configure AUTOSAR Sender-Receiver Interfaces

• “Configure and Map Sender-Receiver Interface” on page 4-311

4 AUTOSAR Component Development

4-310

• “Configure Sender-Receiver Data Element Properties” on page 4-312

Configure and Map Sender-Receiver Interface

This example:

1 Opens a model.
2 Adds an AUTOSAR sender-receiver interface to the model.
3 Adds data elements.
4 Creates sender and receiver ports.
5 Maps Simulink inports and outports to AUTOSAR receiver and sender ports.

See also “Configure AUTOSAR Runnables and Events” on page 4-304.
% Open model
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Add AUTOSAR S-R interface
ifName = 'mySrIf';
ifPkg = get(arProps,'XmlOptions','InterfacePackage')
addPackageableElement(arProps,'SenderReceiverInterface',ifPkg,ifName,'IsService',false);
ifPaths=find(arProps,[],'SenderReceiverInterface','PathType','FullyQualified')

% Add AUTOSAR S-R data elements with ReadWrite calibration access
de1 = 'myDE1';
de2 = 'myDE2';
swCalibValue= 'ReadWrite';
add(arProps, [ifPkg '/' ifName],'DataElements',de1,'SwCalibrationAccess',swCalibValue);
add(arProps, [ifPkg '/' ifName],'DataElements',de2,'SwCalibrationAccess',swCalibValue);

% Add AUTOSAR receiver and sender ports with S-R interface name
rPortName = 'myRPort';
pPortName = 'myPPort';
aswcPath = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
add(arProps,aswcPath{1},'ReceiverPorts',rPortName,'Interface',ifName);
add(arProps,aswcPath{1},'SenderPorts',pPortName,'Interface',ifName);

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map Simulink inport RPort_DE2 to AUTOSAR receiver port myRPort and data element myDE2
rDataAccessMode = 'ImplicitReceive';
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'RPort_DE2')
mapInport(slMap,'RPort_DE2',rPortName,de2,rDataAccessMode);
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'RPort_DE2')

% Map Simulink outport PPort_DE1 to AUTOSAR sender port myPPort and data element myDE1
sDataAccessMode = 'ImplicitSend';
[arPortName,arDataElementName,arDataAccessMode]=getOutport(slMap,'PPort_DE1')
mapOutport(slMap,'PPort_DE1',pPortName,de1,sDataAccessMode);
[arPortName,arDataElementName,arDataAccessMode]=getOutport(slMap,'PPort_DE1')

ifPkg =
 '/pkg/if'

ifPaths =
 {'/pkg/if/Interface1'} {'/pkg/if/Interface2'} {'/pkg/if/mySrIf'}

arPortName =
 'RPort'
arDataElementName =
 'DE2'
arDataAccessMode =
 'ImplicitReceive'

arPortName =
 'myRPort'
arDataElementName =
 'myDE2'

 AUTOSAR Property and Map Function Examples

4-311

arDataAccessMode =
 'ImplicitReceive'

arPortName =
 'PPort'
arDataElementName =
 'DE1'
arDataAccessMode =
 'ImplicitSend'

arPortName =
 'myPPort'
arDataElementName =
 'myDE1'
arDataAccessMode =
 'ImplicitSend'

Configure Sender-Receiver Data Element Properties

This example loops through AUTOSAR sender-receiver (S-R) interfaces and data elements to
configure calibration properties for S-R data elements.
% Open model
hModel = 'autosar_swc_expfcns';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Configure SwCalibrationAccess for AUTOSAR data elements in S-R interfaces
srIfs = find(arProps,[],'SenderReceiverInterface','PathType','FullyQualified')

% Loop through S-R interfaces and get data elements
for i=1:length(srIfs)
 srIf = srIfs{i};
 dataElements = get(arProps,srIf,'DataElements','PathType','FullyQualified')

% Loop through data elements for each S-R interface and set SwCalibrationAccess
 swCalibValue = 'ReadWrite';
 for ii=1:length(dataElements)
 dataElement = dataElements{ii};
 set(arProps,dataElement,'SwCalibrationAccess',swCalibValue)
 get(arProps,dataElement,'SwCalibrationAccess');
 end
end

srIfs =
 {'/pkg/if/Interface1'} {'/pkg/if/Interface2'}

dataElements =
 {'/pkg/if/Interface1/DE1'} {'/pkg/if/Interface1/DE2'}

dataElements =
 {'/pkg/if/Interface2/DE1'} {'/pkg/if/Interface2/DE2'}
 {'/pkg/if/Interface2/DE3'} {'/pkg/if/Interface2/DE4'}

Configure AUTOSAR Client-Server Interfaces

• “Configure Server Properties” on page 4-312
• “Configure Client Properties” on page 4-314

Configure Server Properties

This example:

1 Opens a model.
2 Adds an AUTOSAR client-server interface to the model.
3 Adds an operation.
4 Creates a server port.
5 Creates a server runnable.

4 AUTOSAR Component Development

4-312

6 Maps a Simulink function to the AUTOSAR server runnable.
% Open model
hModel = 'mControllerWithInterface_server';
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Add AUTOSAR C-S interface
ifName = 'myCsIf';
ifPkg = get(arProps,'XmlOptions','InterfacePackage')
addPackageableElement(arProps,'ClientServerInterface',ifPkg,ifName,'IsService',false);
ifPaths=find(arProps,[],'ClientServerInterface','PathType','FullyQualified');

% Add AUTOSAR operation to C-S interface
csOp = 'readData';
add(arProps, [ifPkg '/' ifName],'Operations',csOp);

% Add AUTOSAR arguments to C-S operation with Direction and SwCalibrationAccess properties
args = {'Op','In'; 'Data','Out'; 'ERR','Out'; 'NegCode','Out'}
swCalibValue = 'ReadOnly';
for i=1:length(args)
 add(arProps,[ifPkg '/' ifName '/' csOp],'Arguments',args{i,1},'Direction',args{i,2},...
 'SwCalibrationAccess',swCalibValue);
end
get(arProps,[ifPkg '/' ifName '/' csOp],'Arguments')

% Add AUTOSAR server port with C-S interface name
sPortName = 'mySPort';
aswcPath = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
add(arProps,aswcPath{1},'ServerPorts',sPortName,'Interface',ifName);

% Add AUTOSAR server runnable with symbol name that matches Simulink function name
serverRunnable = 'Runnable_myReadData';
serverRunnableSymbol = 'readData';
swc = get(arProps,'XmlOptions','ComponentQualifiedName')
ib = get(arProps,swc,'Behavior')
runnables = get(arProps,ib,'Runnables');
% To avoid symbol conflict, remove existing runnable with symbol name readData
delete(arProps,'SWC_Controller/ControllerWithInterface_ar/Runnable_readData')
add(arProps,ib,'Runnables',serverRunnable,'symbol',serverRunnableSymbol);
runnables = get(arProps,ib,'Runnables');

% Add AUTOSAR operation invoked event
oiEventName = 'Event_myReadData';
add(arProps,ib,'Events',oiEventName,'Category','OperationInvokedEvent',...
 'Trigger','mySPort.readData','StartOnEvent',[ib '/' serverRunnable]);

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map Simulink function readData to AUTOSAR runnable Runnable_myReadData
mapFunction(slMap,'readData',serverRunnable);
arRunnableName=getFunction(slMap,'readData')

ifPkg =
 '/ControllerWithInterface_ar_pkg/ControllerWithInterface_ar_if'

args =
 {'Op' } {'In' }
 {'Data' } {'Out'}
 {'ERR' } {'Out'}
 {'NegCode'} {'Out'}

ans =
 {'myCsIf/readData/Op'} {'myCsIf/readData/Data'}
 {'myCsIf/readData/ERR'} {'myCsIf/readData/NegCode'}

swc =
 '/pkg/swc/SWC_Controller'

ib =
 'SWC_Controller/ControllerWithInterface_ar'

arRunnableName =
 'Runnable_myReadData'

 AUTOSAR Property and Map Function Examples

4-313

Configure Client Properties

This example:

1 Opens a model.
2 Adds an AUTOSAR client-server interface to the model.
3 Adds an operation.
4 Creates a client port.
5 Maps a Simulink function caller to the AUTOSAR client port and operation.

% Open model
hModel = 'mControllerWithInterface_client';
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Add AUTOSAR C-S interface
ifName = 'myCsIf';
ifPkg = get(arProps,'XmlOptions','InterfacePackage');
addPackageableElement(arProps,'ClientServerInterface',ifPkg,ifName,'IsService',false);
ifPaths=find(arProps,[],'ClientServerInterface','PathType','FullyQualified')

% Add AUTOSAR operation to C-S interface
csOp = 'readData';
add(arProps, [ifPkg '/' ifName],'Operations',csOp);

% Add AUTOSAR arguments to C-S operation with Direction and SwCalibrationAccess properties
args = {'Op','In'; 'Data','Out'; 'ERR','Out'; 'NegCode','Out'}
swCalibValue = 'ReadOnly';
for i=1:length(args)
 add(arProps,[ifPkg '/' ifName '/' csOp],'Arguments',args{i,1},'Direction',args{i,2},...
 'SwCalibrationAccess',swCalibValue);
end
get(arProps,[ifPkg '/' ifName '/' csOp],'Arguments')

% Add AUTOSAR client port with C-S interface name
cPortName = 'myCPort';
aswcPath = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
add(arProps,aswcPath{1},'ClientPorts',cPortName,'Interface',ifName);

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map Simulink function caller readData to AUTOSAR client port and operation
[arPort,arOp] = getFunctionCaller(slMap,'readData');
mapFunctionCaller(slMap,'readData',cPortName,csOp);
[arPort,arOp] = getFunctionCaller(slMap,'readData')

ifPaths =
 {'/pkg/if/csInterface'} {'/pkg/if/myCsIf'}

args =
 {'Op' } {'In' }
 {'Data' } {'Out'}
 {'ERR' } {'Out'}
 {'NegCode'} {'Out'}

ans =
 {'myCsIf/readData/Op'} {'myCsIf/readData/Data'}
 {'myCsIf/readData/ERR'} {'myCsIf/readData/NegCode'}

arPort =
 'myCPort'

arOp =
 'readData'

Configure AUTOSAR Mode-Switch Interfaces

This example:

4 AUTOSAR Component Development

4-314

1 Opens a model.
2 Declares an AUTOSAR mode declaration group.
3 Adds a mode-switch interface to the model.
4 Adds a mode receiver port.
5 Adds a ModeSwitchEvent to a runnable.
6 Maps a Simulink inport to the AUTOSAR mode receiver port and mode group.

% Add path to model and mode definition files and open model
addpath(fullfile(matlabroot,'/help/toolbox/autosar/examples'));
hModel = 'mAutosarMsConfig';
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% File mdgModes.m declares AUTOSAR mode declaration group mdgModes for use with the M-S interface.
% See matlabroot/help/toolbox/autosar/examples/mdgModes.m, which must be on the MATLAB path.
% The enumerated mode values are:
% STARTUP(0)
% RUN(1)
% SHUTDOWN(2)
% Separate code, below, defines mode declaration group information for XML export.

% Apply data type mdgModes to Simulink inport MRPort
set_param([hModel,'/MRPort'],'OutDataTypeStr','Enum: mdgModes')
get_param([hModel,'/MRPort'],'OutDataTypeStr');
% Apply data type mdgModes and value STARTUP to Runnable1_subsystem/Enumerated Constant
set_param([hModel,'/Runnable1_subsystem/Enumerated Constant'],'OutDataTypeStr','Enum: mdgModes')
set_param([hModel,'/Runnable1_subsystem/Enumerated Constant'],'Value','mdgModes.STARTUP')

% Add AUTOSAR M-S interface and set its ModeGroup to mdgModes
ifName = 'myMsIf';
modeGroup = 'mdgModes';
ifPkg = get(arProps,'XmlOptions','InterfacePackage');
addPackageableElement(arProps,'ModeSwitchInterface',ifPkg,ifName,'IsService',true);
add(arProps,[ifPkg '/' ifName],'ModeGroup',modeGroup)
ifPaths=find(arProps,[],'ModeSwitchInterface','PathType','FullyQualified')

% Add AUTOSAR mode-receiver port with M-S interface name
mrPortName = 'myMRPort';
aswcPath = find(arProps,[],'AtomicComponent','PathType','FullyQualified');
add(arProps,aswcPath{1},'ModeReceiverPorts',mrPortName,'Interface',ifName);

% Define AUTOSAR ModeSwitchEvent for runnable
msRunnable = 'Runnable1';
msEventName = 'myMSEvent';
swc = get(arProps,'XmlOptions','ComponentQualifiedName');
ib = get(arProps,swc,'Behavior');
runnables = get(arProps,ib,'Runnables')
add(arProps,ib,'Events',msEventName,'Category','ModeSwitchEvent',...
 'Activation', 'OnTransition', ...
 'StartOnEvent', [ib '/' msRunnable]);
% Separate code, below, sets ModeSwitchEvent port and trigger values.

% To pass validation, remove redundant timing event in AUTOSAR configuration
events = get(arProps,ib,'Events');
delete(arProps,[ib,'/Event_t_1tic_A'])
events = get(arProps,ib,'Events')

% Export mode declaration group information to AUTOSAR data type package in XML
mdgPkg = get(arProps,'XmlOptions','DataTypePackage');
mdgPath = [mdgPkg '/' modeGroup]
initMode = [mdgPath '/STARTUP']
addPackageableElement(arProps,'ModeDeclarationGroup',mdgPkg,modeGroup,'OnTransitionValue',100)
% Add modes to ModeDeclarationGroup and set InitialMode
add(arProps,mdgPath,'Mode','STARTUP','Value',0)
add(arProps,mdgPath,'Mode','RUN','Value',1)
add(arProps,mdgPath,'Mode','SHUTDOWN','Value',2)
set(arProps,mdgPath,'InitialMode',initMode)
% Set ModeGroup for M-S interface
set(arProps,[ifPkg '/' ifName '/' modeGroup],'ModeGroup',mdgPath)

% Set port and trigger for AUTOSAR ModeSwitchEvent
expTrigger = {[mrPortName '.STARTUP'], [mrPortName '.SHUTDOWN']}
set(arProps,[ib '/' msEventName],'Trigger',expTrigger)

 AUTOSAR Property and Map Function Examples

4-315

% Use AUTOSAR map functions
slMap=autosar.api.getSimulinkMapping(hModel);

% Map Simulink inport MRPort to AUTOSAR mode receiver port myMRPort and mode group mdgModes
msDataAccessMode = 'ModeReceive';
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'MRPort');
mapInport(slMap,'MRPort',mrPortName,modeGroup,msDataAccessMode);
[arPortName,arDataElementName,arDataAccessMode]=getInport(slMap,'MRPort')

% To pass validation, set inport Runnable1 sample time to -1 (inherited)
set_param([hModel,'/Runnable1'],'SampleTime','-1')

ifPaths =
 {'/pkg/if/myMsIf'}

runnables =
 {'ASWC/Behavior/Runnable_Init'} {'ASWC/Behavior/Runnable1'}
 {'ASWC/Behavior/Runnable2'} {'ASWC/Behavior/Runnable3'}

events =
 {'ASWC/Behavior/Event_t_1tic_B'} {'ASWC/Behavior/Event_t_10tic'}
 {'ASWC/Behavior/myMSEvent'}

mdgPath =
 '/pkg/dt/mdgModes'

initMode =
 '/pkg/dt/mdgModes/STARTUP'

expTrigger =
 {'myMRPort.STARTUP'} {'myMRPort.SHUTDOWN'}

arPortName =
 'myMRPort'
arDataElementName =
 'mdgModes'
arDataAccessMode =
 'ModeReceive'

Configure AUTOSAR XML Export
• “Configure XML Export Options” on page 4-316
• “Configure AUTOSAR Package Paths” on page 4-317

Configure XML Export Options

This example configures AUTOSAR XML export parameter Exported XML file packaging
(ArxmlFilePackaging).

To configure AUTOSAR package paths, see “Configure AUTOSAR Package Paths” on page 4-317.
% Open model
hModel = 'autosar_swc_counter';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Set exported AUTOSAR XML file packaging to Single file
get(arProps,'XmlOptions','ArxmlFilePackaging')
set(arProps,'XmlOptions','ArxmlFilePackaging','SingleFile');
get(arProps,'XmlOptions','ArxmlFilePackaging')

ans =
 'Modular'

ans =
 'SingleFile'

4 AUTOSAR Component Development

4-316

Configure AUTOSAR Package Paths

This example configures an AUTOSAR package path for XML export. For other AUTOSAR package
path property names, see “Configure AUTOSAR Packages and Paths” on page 4-86.

To configure other XML export options, see “Configure XML Export Options” on page 4-316.
% Open model
hModel = 'autosar_swc_counter';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Use AUTOSAR property functions
arProps = autosar.api.getAUTOSARProperties(hModel);

% Specify AUTOSAR application data type package path for XML export
get(arProps,'XmlOptions','ApplicationDataTypePackage')
set(arProps,'XmlOptions','ApplicationDataTypePackage','/Company/Powertrain/DataTypes/ADTs');
get(arProps,'XmlOptions','ApplicationDataTypePackage')

ans =
 '/Company/Powertrain/DataTypes/ApplDataTypes'

ans =
 '/Company/Powertrain/DataTypes/ADTs'

See Also
get | set

Related Examples
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294

More About
• “AUTOSAR Component Configuration” on page 4-3

 AUTOSAR Property and Map Function Examples

4-317

Limitations and Tips
The following limitation applies to AUTOSAR component development.

AUTOSAR Client Block in Referenced Model
The software does not support the use of an AUTOSAR client block, such as Function Caller or Invoke
AUTOSAR Server Operation, in a referenced model.

4 AUTOSAR Component Development

4-318

AUTOSAR Code Generation

• “Generate AUTOSAR C Code and XML Descriptions” on page 5-2
• “Configure AUTOSAR Code Generation” on page 5-7
• “Code Generation with AUTOSAR Code Replacement Library” on page 5-13
• “Verify AUTOSAR C Code with SIL and PIL” on page 5-30
• “Integrate Generated Code for Multi-Instance Software Components” on page 5-32
• “Import and Simulate AUTOSAR Code from Previous Releases” on page 5-33
• “Limitations and Tips” on page 5-34

5

Generate AUTOSAR C Code and XML Descriptions

Generate AUTOSAR-compliant C code and export AUTOSAR XML (ARXML) descriptions from
AUTOSAR component model.

If you have Simulink Coder and Embedded Coder software, you can build AUTOSAR component
models. Building a classic component model generates algorithmic C code and exports ARXML
descriptions that comply with AUTOSAR Classic Platform specifications. Use the generated C code
and ARXML descriptions for testing in Simulink or integration into an AUTOSAR run-time
environment.

Prepare AUTOSAR Component Model for Code Generation

Open a component model from which you want to generate AUTOSAR C code and ARXML
descriptions. This example uses AUTOSAR example model autosar_swc.

open_system('autosar_swc');

Optionally, to refine model configuration settings for code generation, you can use the Embedded
Coder Quick Start (recommended). This example uses the Embedded Coder Quick Start. From the
Apps tab, open the AUTOSAR Component Designer app. On the AUTOSAR tab, click Quick Start.

Work through the quick-start procedure. In the Output window, select output option C code
compliant with AUTOSAR.

5 AUTOSAR Code Generation

5-2

The quick-start software takes the following steps to configure an AUTOSAR software component
model:

1 Configures code generation settings for the model. If the AUTOSAR target is not selected, the
software sets model configuration parameter System target file to autosar.tlc and Generate
XML for schema version to a default value.

2 If no AUTOSAR mapping exists, the software creates a mapped AUTOSAR software component
for the model.

3 Performs a model build.

In the last window, when you click Finish, your model opens in the AUTOSAR code perspective.

 Generate AUTOSAR C Code and XML Descriptions

5-3

Inspect XML Options in AUTOSAR Dictionary

Before generating code, open the AUTOSAR Dictionary and examine the settings of AUTOSAR XML
export parameters. On the AUTOSAR tab, select Code Interface > AUTOSAR Dictionary. In the
AUTOSAR Dictionary, select XML Options.

The XML options view in the AUTOSAR Dictionary displays XML export parameters and their values.
You can configure:

• XML file packaging for AUTOSAR elements created in Simulink
• AUTOSAR package paths
• Aspects of exported AUTOSAR XML content

5 AUTOSAR Code Generation

5-4

This example sets Exported XML file packaging to Modular, so that ARXML is exported into
modular files, including modelname_component.arxml, modelname_datatype.arxml, and
modelname_interface.arxml.

Generate AUTOSAR C Code and XML Descriptions

To generate AUTOSAR C code and XML software descriptions that comply with Classic Platform
specifications, build the model. In the model window, press Ctrl+B. The build process generates C
code and ARXML descriptions to the model build folder, autosar_swc_autosar_rtw. Data types
and related elements that are not used in the model are removed from the exported ARXML files.
When the build completes, a code generation report opens.

 Generate AUTOSAR C Code and XML Descriptions

5-5

Related Links

• “Code Generation”
• “AUTOSAR Component Configuration” on page 4-3
• “AUTOSAR Blockset”

5 AUTOSAR Code Generation

5-6

Configure AUTOSAR Code Generation
To generate AUTOSAR-compliant C code and ARXML component descriptions from a model
configured for the AUTOSAR Classic Platform:

1 In the Configuration Parameters dialog box, on the Code Generation > AUTOSAR Code
Generation Options pane, configure AUTOSAR code generation parameters.

2 Configure AUTOSAR XML export options by using the AUTOSAR Dictionary or AUTOSAR
property functions.

3 Build the model.

In this section...
“Select AUTOSAR Classic Schema” on page 5-7
“Specify Maximum SHORT-NAME Length” on page 5-8
“Configure AUTOSAR Compiler Abstraction Macros” on page 5-8
“Root-Level Matrix I/O” on page 5-9
“Inspect AUTOSAR XML Options” on page 5-9
“Generate AUTOSAR C and XML Files” on page 5-9

Select AUTOSAR Classic Schema
For import and export of ARXML files and generation of AUTOSAR-compliant C code, the software
supports the following AUTOSAR Classic Platform schema versions.

Schema Version
Value

Schema Revisions Supported for
Import

Export Schema Revision

R20-11 (default) R20-11 R20-11
R19-11 R19-11 R19-11
4.4 4.4.0 4.4.0
4.3 4.3.0, 4.3.1 4.3.1
4.2 4.2.1, 4.2.2 4.2.2
4.1 4.1.1, 4.1.2, 4.1.3 4.1.3
4.0 4.0.1, 4.0.2, 4.0.3 4.0.3

Selecting the AUTOSAR system target file for your model for the first time sets the schema version
parameter to the default value, R20-11.

If you import ARXML files into Simulink, the ARXML importer detects the schema version and sets
the schema version parameter in the model. For example, if you import ARXML files based on schema
4.3 revision 4.3.0 or 4.3.1, the importer sets the schema version parameter to 4.3.

When you build an AUTOSAR model, the code generator exports ARXML descriptions and generates
C code that comply with the current schema version. For example, if Generate XML file for schema
version equals 4.3, export uses the export schema revision listed above for schema 4.3, that is,
revision 4.3.1.

 Configure AUTOSAR Code Generation

5-7

Before exporting your AUTOSAR software component, check the selected schema version. If you need
to change the selected schema version, use the model configuration parameter Generate XML file
for schema version.

Note Set the AUTOSAR model configuration parameters to the same values for top and referenced
models. This guideline applies to Generate XML file for schema version, Maximum SHORT-
NAME length, Use AUTOSAR compiler abstraction macros, and Support root-level matrix I/O
using one-dimensional arrays.

Specify Maximum SHORT-NAME Length
The AUTOSAR standard specifies that the maximum length of SHORT-NAME XML elements is 128
characters.

To specify a maximum length for SHORT-NAME elements exported by the code generator, set the
model configuration parameter Maximum SHORT-NAME length to an integer value between 32
and 128, inclusive. The default is 128 characters.

Configure AUTOSAR Compiler Abstraction Macros
Compilers for 16-bit platforms (for example, Cosmic and Metrowerks for S12X or Tasking for ST10)
use special keywords to deal with the limited 16-bit addressing range. The location of data and code
beyond the 64k border is selected explicitly by special keywords. However, if such keywords are used
directly within the source code, then software must be ported separately for each microcontroller
family. That is, the software is not platform-independent.

AUTOSAR specifies C macros to abstract compiler directives (near/far memory calls) in a platform-
independent manner. These compiler directives, derived from the 16-bit platforms, enable better code
efficiencies for 16-bit micro-controllers without separate porting of source code for each compiler.
This approach allows your system integrator, rather than your software component implementer, to
choose the location of data and code for each software component.

For more information on AUTOSAR compiler abstraction, see www.autosar.org.

To enable AUTOSAR compiler macro generation, select the model configuration parameter Use
AUTOSAR compiler abstraction macros.

When you build the model, the software applies compiler abstraction macros to global data and
function definitions in the generated code.

For data, the macros are in the following form:

• CONST(consttype, memclass) varname;
• VAR(type, memclass) varname;

where

• consttype and type are data types
• memclass is a macro string SWC_VAR (SWC is the software component identifier)
• varname is the variable identifier

For functions (model and subsystem), the macros are in the following form:

5 AUTOSAR Code Generation

5-8

https://www.autosar.org

• FUNC(type, memclass) funcname(void)

where

• type is the data type of the return argument
• memclass is a macro string. This string can be either SWC_CODE for runnables (external

functions), or SWC_CODE_LOCAL for internal functions (SWC is the software component identifier).

If you do not select Use AUTOSAR compiler abstraction macros, the code generator produces the
following code:
/* Block signals (auto storage) */
BlockIO rtB;

/* Block states (auto storage) */
D_Work rtDWork;

/* Model step function */
void Runnable_Step(void)

However, if you select Use AUTOSAR compiler abstraction macros, the code generator produces
macros in the code:
/* Block signals (auto storage) */
VAR(BlockIO, SWC1_VAR) rtB;

/* Block states (auto storage) */
VAR(D_Work, SWC1_VAR) rtDWork;

/* Model step function */
FUNC(void, SWC1_CODE) Runnable_Step(void)

Root-Level Matrix I/O
For an AUTOSAR component model with multidimensional arrays, if you set the model configuration
parameter Array layout to Row-major, you can preserve dimensions of multidimensional arrays in
the generated C code. Preserving array dimensions in the generated code can enhance code
integration.

If your application design requires Column-major array layout, you can configure ARXML export to
support root-level matrix I/O. The software can export ARXML descriptions that implement matrices
as one-dimensional arrays.

By default, for Column-major array layout, the software does not allow matrix I/O at the root level.
Building the model generates an error. To enable root-level matrix I/O, select the model configuration
parameter Support root-level matrix I/O using one-dimensional arrays.

When Array layout is set to Row-major, Support root-level matrix I/O using one-dimensional
arrays has no effect.

Inspect AUTOSAR XML Options
Examine the XML options that you configured by using the AUTOSAR Dictionary. If you have not yet
configured them, see “Configure AUTOSAR XML Options” on page 4-43.

Generate AUTOSAR C and XML Files

 Configure AUTOSAR Code Generation

5-9

After configuring AUTOSAR code generation and XML options, generate code. To generate C code
and export XML descriptions, build the component model.

The build process generates AUTOSAR-compliant C code and AUTOSAR XML descriptions to the
model build folder. The exported XML files include:

• One or more modelname*.arxml files, based on whether you set Exported XML file packaging
to Single file or Modular.

• If you imported ARXML files into Simulink, updated versions of the same files.

This table lists modelname*.arxml files that are generated based on the value of the Exported
XML file packaging option configured in the AUTOSAR Dictionary.

Exported XML
File Packaging
Value

Exported File Name By Default Contains...

Single file modelname.arxml AUTOSAR elements for software components, data
types, implementation, interfaces, and timing.

Modular modelname_component.arxml Software components, including:

• Ports
• Events
• Runnables
• Inter-runnable variables (IRVs)
• Included data type sets
• Component-scoped parameters and variables

This is the main ARXML file exported for the
Simulink model. In addition to software components,
the component file contains packageable elements
that the exporter does not move to data type,
implementation, interface, or timing files based on
AUTOSAR element category.

5 AUTOSAR Code Generation

5-10

Exported XML
File Packaging
Value

Exported File Name By Default Contains...

modelname_datatype.arxml Data types and related elements, including:

• Application data types
• Software base types
• Data type mapping sets
• Constant specifications
• Physical data constraints
• System constants
• Software address methods
• Mode declaration groups
• Computation methods
• Units and unit groups
• Software record layouts
• Internal data constraints

modelname_implementation.arxml Software component implementation, including code
descriptors.

modelname_interface.arxml Interfaces, including S-R, C-S, M-S, NV, parameter,
and trigger interfaces. The interfaces include type-
specific elements, such as S-R data elements, C-S
operations, port-based parameters, or triggers.

modelname_timing.arxml Timing model, including runnable execution order
constraints.

You can merge the AUTOSAR XML component descriptions back into an AUTOSAR authoring tool.
The AUTOSAR component information is partitioned into separate files to facilitate merging. The
partitioning attempts to minimize the number of merges that you must do. You do not need to merge
the data type file into the authoring tool because data types are usually defined early in the design
process. You must, however, merge the internal behavior file because this information is part of the
model implementation.

To help support the round trip of AUTOSAR elements between an AUTOSAR authoring tool (AAT) and
the Simulink model-based design environment, the code generator preserves AUTOSAR elements and
their universal unique identifiers (UUIDs) across ARXML import and export. For more information,
see “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-
37.

For an example of how to generate AUTOSAR-compliant C code and export AUTOSAR XML
component descriptions from a Simulink model, see “Generate AUTOSAR C Code and XML
Descriptions” on page 5-2.

See Also
Generate XML file for schema version | Maximum SHORT-NAME length | Use AUTOSAR
compiler abstraction macros | Support root-level matrix I/O using one-dimensional arrays

 Configure AUTOSAR Code Generation

5-11

Related Examples
• “Configure AUTOSAR XML Options” on page 4-43
• “Generate AUTOSAR C Code and XML Descriptions” on page 5-2

More About
• “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-

37

5 AUTOSAR Code Generation

5-12

Code Generation with AUTOSAR Code Replacement Library
If your model is configured for AUTOSAR code generation, you can use the AUTOSAR 4.0 code
replacement library to produce functions that closely align with the AUTOSAR standard.

In this section...
“Code Replacement Library for AUTOSAR Code Generation” on page 5-13
“Find Supported AUTOSAR Library Routines” on page 5-13
“Configure Code Generator to Use AUTOSAR 4.0 Code Replacement Library” on page 5-14
“AUTOSAR 4.0 Library Host Code Verification” on page 5-14
“Code Replacement Library Checks” on page 5-15
“AUTOSAR Code Replacement Library Example for IFX/IFL Function Replacement” on page 5-15
“Required Algorithm Property Settings for IFL/IFX Function and Block Mappings” on page 5-16

Code Replacement Library for AUTOSAR Code Generation
The AUTOSAR 4.0 code replacement library enables you to customize the code generator to produce
C code that closely aligns with the AUTOSAR standard. Consider using the code replacement library
if:

• You want to use service routines provided in the library.
• You have replacement code for the service routines.
• The replacement code follows the AUTOSAR file naming convention, that is, routines for any given
specification are in one header file (for example, Mfl.h or Mfx.h)

• You have a build harness setup that can compile and link the AUTOSAR library with the generated
code. For more information about building code for AUTOSAR, see “Code Generation”.

Note MATLAB and Simulink lookup table indexing differs from AUTOSAR MAP indexing. MATLAB
takes the linear algebra approach—row (u1) and column (u2). AUTOSAR (and ASAM) takes the
Cartesian coordinate approach—x-axis (u2) and y-axis (u1), where u1 and u2 are input arguments to
Simulink 2-D lookup table blocks. Due to the difference, the code replacement software transposes
the input arguments for AUTOSAR MAP routines.

For more information on code replacement and code replacement libraries, see “What Is Code
Replacement?” (Embedded Coder) and “Code Replacement Libraries” (Embedded Coder).

Find Supported AUTOSAR Library Routines
To explore the AUTOSAR library routines supported by the AUTOSAR code replacement library, use
the Code Replacement Viewer. To open the viewer, at the command prompt, enter
crviewer('AUTOSAR 4.0').

For more information, see “Choose a Code Replacement Library” (Embedded Coder).

 Code Generation with AUTOSAR Code Replacement Library

5-13

Configure Code Generator to Use AUTOSAR 4.0 Code Replacement
Library
To configure the code generator to use the AUTOSAR code replacement library for your model, open
the Configuration Parameters dialog box. Select Code Generation > Interface > Code
replacement libraries > AUTOSAR 4.0.

For more information on code replacement and code replacement libraries, see “What Is Code
Replacement?” (Embedded Coder) and “Code Replacement Libraries” (Embedded Coder).

AUTOSAR 4.0 Library Host Code Verification
To help support MATLAB host code verification for AUTOSAR models, AUTOSAR Blockset provides
host implementations of IFX, IFL, MFX, and MFL routines in the AUTOSAR 4.0 library. The host
library implementations enable software-in-the-loop (SIL) validation for models that trigger code
replacements from the AUTOSAR 4.0 library.

Consider the following AUTOSAR model, which contains interpolation and math blocks that have
been tuned to trigger AUTOSAR IFX and MFX routine code replacements. In the model configuration
parameters, System target file is set to autosar.tlc and Code replacement libraries is set to
AUTOSAR 4.0.

Configure and run a SIL simulation of the model. The SIL simulation:

1 Generates model code. MathWorks host library implementations are used in IFX, IFL, MFX, and
MFL routine code replacements.

2 Builds the SIL application. The host library is linked to the SIL executable.
3 Runs the model and produces simulation output, based on your SIL settings.

If you prefer to use your own host library or custom code for SIL simulations, you can disable the
MathWorks host library by using the following command:
set_param(modelname,'DisableAUTOSARRoutinesHostLibrary','on');

5 AUTOSAR Code Generation

5-14

Code Replacement Library Checks
Code replacement requires that the combination of types for input, breakpoint, table, and output
types are compatible with the AUTOSAR specification. Floating-point (IFL) replacement only supports
single types while fixed-point (IFX) replacement supports uint8, uint16, int8, int16 and associated
fixed-point types. When using these routine blocks, the type combination requirements vary and are
enforced as required.

AUTOSAR Code Replacement Library Example for IFX/IFL Function
Replacement
The Code Replacement Viewer lists AUTOSAR floating-point interpolation (IFL) and fixed-point
interpolation (IFX) library routines that you can generate in lookup table C code. For replacing lookup
table C code with IFL or IFX library routines, AUTOSAR Blockset provides lookup table blocks that
are preconfigured for AUTOSAR code generation. You insert a block such as Curve or Map in your
model, then open the block dialog box and configure the block to generate a specific interpolation
routine required by your design. For more information, see “Configure Lookup Tables for AUTOSAR
Calibration and Measurement” on page 4-274.

This example shows how to replace code generated for AUTOSAR lookup table blocks with functions
that are compatible with AUTOSAR IFL library routines. If you want to replace code with IFX library
routines, you can edit the lookup table block dialog boxes to change the targeted routine library.

1 Create your Simulink model by using any of these AUTOSAR lookup table blocks: Prelookup,
Curve Using Prelookup, Map Using Prelookup, Curve, or Map. For example, here is a Prelookup
block connected to a Curve Using Prelookup block.

Alternatively, you can open the AUTOSAR example model mAutosarLutObjs.slx, which
contains the displayed blocks. To copy the model file to your working folder, enter this MATLAB
command:
copyfile(fullfile(matlabroot,'help/toolbox/autosar/examples/mAutosarLutObjs.slx'),'.')

2 Open each lookup table block and configure it to generate a routine from the AUTOSAR 4.0 code
replacement library (CRL). As you modify block settings, the block dialog box updates the name
of the targeted AUTOSAR routine.

 Code Generation with AUTOSAR Code Replacement Library

5-15

For details about configuring the blocks in this example, see “Configure COM_AXIS Lookup
Tables by Using Lookup Table and Breakpoint Objects” on page 4-278.

3 Configure the code generator to use the AUTOSAR 4.0 CRL for your model. In the Configuration
Parameters dialog box, select Code Generation > Interface > Code replacement libraries >
AUTOSAR 4.0. Alternatively, from the command line or programmatically, use set_param to set
the CodeReplacementLibrary parameter to 'AUTOSAR 4.0'.

4 Optionally, you can configure the model to produce a code generation report that summarizes
which blocks trigger code replacements. In the Configuration Parameters dialog box, in the Code
Generation > Report pane, select the option Summarize which blocks triggered code
replacements. Alternatively, from the command line or programmatically, use set_param to set
the GenerateCodeReplacementReport parameter to 'on'.

5 Build the model and review the generated code for expected code replacements. For example,
search the generated code for the routine prefix Ifl.

Required Algorithm Property Settings for IFL/IFX Function and Block
Mappings
IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Ifl_DPSearch

Prelookup

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Use last breakpoint for input at or
above upper limit

UseLastBreakPoint

On

5 AUTOSAR Code Generation

5-16

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Ifl_IpoCur

Interpolation Using Prelookup

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Valid index input may reach last
index

ValidIndexMayReachLast

On

Remove protection against out-of-
range index in generated code

RemoveProtectionIndex

Off

Integer rounding mode

RndMeth

Round or Zero

Ifl_IpoMap

Interpolation Using Prelookup

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Valid index input may reach last
index

ValidIndexMayReachLast

On

Remove protection against out-of-
range index in generated code

RemoveProtectionIndex

Off

Integer rounding mode

RndMeth

Round or Zero

Ifl_IntIpoCur

n-D Lookup Table

Interpolation method

InterpMethod

Linear

 Code Generation with AUTOSAR Code Replacement Library

5-17

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Ifl_IntIpoMap

n-D Lookup Table

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Ifx_DPSearch

Prelookup

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

5 AUTOSAR Code Generation

5-18

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Use last breakpoint for input at or
above upper limit

UseLastBreakPoint

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Ifx_IpoCur

Interpolation Using Prelookup

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Valid index input may reach last
index

ValidIndexMayReachLast

On

Remove protection against out-of-
range index in generated code

RemoveProtectionIndex

Off

Integer rounding mode

RndMeth

Round or Zero

Ifx_LkUpCur

Interpolation Using Prelookup

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

Remove protection against out-of-
range index in generated code

RemoveProtectionIndex

Off

Integer rounding mode

RndMeth

Round or Zero

Valid index input may reach last
index

ValidIndexMayReachLast

On

 Code Generation with AUTOSAR Code Replacement Library

5-19

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Ifx_IpoMap

Interpolation Using Prelookup

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Valid index input may reach last
index

ValidIndexMayReachLast

On

Remove protection against out-of-
range index in generated code

RemoveProtectionIndex

Off

Integer rounding mode

RndMeth

Round or Zero

Ifx_LkUpMap

Interpolation Using Prelookup

Interpolation method

InterpMethod

Nearest

Extrapolation method

ExtrapMethod

Clip

Remove protection against out-of-
range index in generated code

RemoveProtectionIndex

Off

Integer rounding mode

RndMeth

Round or Zero

Valid index input may reach last
index

ValidIndexMayReachLast

On

Ifx_LkUpBaseMap

Interpolation Using Prelookup

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

Remove protection against out-of-
range index in generated code

RemoveProtectionIndex

Off

5 AUTOSAR Code Generation

5-20

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Integer rounding mode

RndMeth

Round or Zero

Valid index input may reach last
index

ValidIndexMayReachLast

On

Ifx_IntIpoCur

n-D Lookup Table

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Ifx_IntLkUpCur

n-D Lookup Table

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

 Code Generation with AUTOSAR Code Replacement Library

5-21

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Ifx_IntIpoFixCur

n-D Lookup Table

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Model configuration parameter
Optimization > Default parameter
behavior

DefaultParameterBehavior

Inlined

Breakpoint data should match power 2
spacing.

Ifx_IntLkUpFixCur

n-D Lookup Table

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

5 AUTOSAR Code Generation

5-22

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Model configuration parameter
Optimization > Signals and
Parameters > Default parameter
behavior

DefaultParameterBehavior

Inlined

Breakpoint data must match power 2
spacing.

Ifx_IntIpoFixICur

n-D Lookup Table

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Breakpoint data must not match power
2 spacing.

Ifx_IntLkUpFixICur

n-D Lookup Table

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

 Code Generation with AUTOSAR Code Replacement Library

5-23

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Breakpoint data must not match power
2 spacing.

Ifx_IntIpoMap

n-D Lookup Table

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Ifx_IntLkUpMap

n-D Lookup Table

Interpolation method

InterpMethod

Nearest

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

5 AUTOSAR Code Generation

5-24

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Ifx_IntLkUpBaseMap

n-D Lookup Table

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Linear search or
Binary search

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Ifx_IntIpoFixMap

n-D Lookup Table

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

 Code Generation with AUTOSAR Code Replacement Library

5-25

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Integer rounding mode

RndMeth

Round or Zero

Model configuration parameter
Optimization > Signals and
Parameters > Default parameter
behavior

DefaultParameterBehavior

Inlined

Breakpoint data must match power 2
spacing.

Ifx_IntLkUpFixMap

n-D Lookup Table

Interpolation method

InterpMethod

Nearest

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Model configuration parameter
Optimization > Signals and
Parameters > Default parameter
behavior

DefaultParameterBehavior

Inlined

Breakpoint data must match power 2
spacing.

Ifx_IntLkUpFixBaseMap

n-D Lookup Table

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

5 AUTOSAR Code Generation

5-26

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Index search method

IndexSearchMethod

Evenly spaced
points

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Model configuration parameter
Optimization > Signals and
Parameters > Default parameter
behavior

DefaultParameterBehavior

Inlined

Breakpoint data must match power 2
spacing.

Ifx_IntIpoFixIMap

n-D Lookup Table

Interpolation method

InterpMethod

Linear

Extrapolation method

ExtrapMethod

Linear

Index search method

IndexSearchMethod

Evenly spaced
points

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Breakpoint data must not match power
2 spacing.

 Code Generation with AUTOSAR Code Replacement Library

5-27

IFL/IFX Function and Block
Mapping

Algorithm Property Parameters Value

Ifx_IntLkUpFixIMap

n-D Lookup Table

Interpolation method

InterpMethod

Nearest

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Breakpoint data must not match power
2 spacing.

Ifx_IntLkUpFixIBaseMap

n-D Lookup Table

Interpolation method

InterpMethod

Flat

Extrapolation method

ExtrapMethod

Clip

Index search method

IndexSearchMethod

Evenly spaced
points

Remove protection against out-of-
range input in generated code

RemoveProtectionInput

Off

Integer rounding mode

RndMeth

Round or Zero

Use last table value for inputs at or
above last breakpoint

UseLastTableValue

On

Breakpoint data must not match power
2 spacing.

5 AUTOSAR Code Generation

5-28

See Also

Related Examples
• “Configure Lookup Tables for AUTOSAR Calibration and Measurement” on page 4-274

More About
• “What Is Code Replacement?” (Embedded Coder)
• “Code Generation”

 Code Generation with AUTOSAR Code Replacement Library

5-29

Verify AUTOSAR C Code with SIL and PIL
As part of developing AUTOSAR software for the Classic Platform, you can carry out code verification
of AUTOSAR software components by using software-in-the-loop (SIL) and processor-in-the-loop (PIL)
simulations. Use SIL for verification of generated source code on your development computer, and
PIL for verification of object code on your production target hardware.

Through behavioral and structural comparisons, code verification demonstrates the equivalence
between a component model and its generated code. You can:

• Test numerical equivalence between your component model and generated code by comparing
normal mode simulation results against SIL or PIL simulation results.

• Show the absence of unintended functionality by comparing model coverage against code
coverage or performing a traceability analysis.

• Configure SIL and PIL simulations to generate code coverage metrics.
• Generate reports that provide bidirectional traceability between model objects and generated

code.

With AUTOSAR models, you run SIL and PIL testing by configuring either the top model or Model
blocks.

• For unit-level testing of an AUTOSAR software component, use top model SIL or PIL. You can test
a top model that is configured for the AUTOSAR system target file (autosar.tlc) by setting the
simulation mode to Software-in-the-Loop (SIL) or Processor-in-the-Loop (PIL).

• For unit-level testing of a subcomponent referenced from an AUTOSAR software component, use
Model block SIL or PIL. In the Model block for the submodel, set Simulation mode to SIL or PIL
and set Code interface to Model reference.

• For composition-level testing of multiple AUTOSAR software components, reference the
component models in a composition, architecture, or test harness model. In the Model block for
each component under test, set Simulation mode to SIL or PIL and set Code interface to Top
model.

For more information, see “Simulation with Top Model” (Embedded Coder) and “Simulation with
Model Blocks” (Embedded Coder).

If you have Simulink Test software, you can use test harnesses to:

• Perform composition-level testing of AUTOSAR software components. For more information, see
“Testing AUTOSAR Compositions” (Simulink Test).

• Perform unit-level testing of atomic subsystems in AUTOSAR software components. For more
information, see “Unit Test Subsystem Code with SIL/PIL Manager” (Embedded Coder).

See Also

Related Examples
• “Simulation with Top Model” (Embedded Coder)
• “Simulation with Model Blocks” (Embedded Coder)
• “Testing AUTOSAR Compositions” (Simulink Test)

5 AUTOSAR Code Generation

5-30

• “Unit Test Subsystem Code with SIL/PIL Manager” (Embedded Coder)

More About
• “SIL and PIL Simulations” (Embedded Coder)
• “Choose a SIL or PIL Approach” (Embedded Coder)

 Verify AUTOSAR C Code with SIL and PIL

5-31

Integrate Generated Code for Multi-Instance Software
Components

When you build an AUTOSAR software component model that is configured for multiple instantiation:

• The generated ARXML describes internal data such as BlockIO and DWork as C-typed per-
instance memory (PIM).

• The generated model header file model.h contains type definitions for the PIMs.

When you integrate the generated ARXML files and code into the AUTOSAR run-time environment
(RTE), the RTE generator does not automatically generate the PIM type definitions. To make the type
definitions available for component instances, the RTE must include the generated model header file.

The method for including the model header file varies according to the integration tooling. For
example:

• In Vector tooling, file Rte.h includes an optional user types file, Rte_UserTypes.h. Update
Rte_UserTypes.h to include model.h.

• In ETAS® tooling, Rte_UserCfg.h is an optional user configuration file. Update Rte_UserCfg.h
to include model.h.

See Also

Related Examples
• “Map Calibration Data for Submodels Referenced from AUTOSAR Component Models” on page

4-65
• “Configure Subcomponent Data for AUTOSAR Calibration and Measurement” on page 4-256
• “Configure AUTOSAR Shared or Per-Instance Parameters” on page 4-212
• “Configure AUTOSAR Per-Instance Memory” on page 4-201
• “Multi-Instance Components” on page 2-9

5 AUTOSAR Code Generation

5-32

Import and Simulate AUTOSAR Code from Previous Releases
You can import into the current release AUTOSAR component code that you generated in a previous
release. To observe the interaction of code from a previous release with components implemented in
the current release, run software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations with the
imported code.

For more information, see:

• “Cross-Release Code Integration” (Embedded Coder)
• “Import AUTOSAR Code from Previous Releases” (Embedded Coder)

See Also

More About
• “Code Generation”

 Import and Simulate AUTOSAR Code from Previous Releases

5-33

Limitations and Tips
The following limitations apply to AUTOSAR code generation.

In this section...
“Generate Code Only Check Box” on page 5-34
“AUTOSAR Compiler Abstraction Macros (Classic Platform)” on page 5-34
“Preservation of Bus Element Dimensions in Exported ARXML and Code” on page 5-34
“C++11 Style Scoped Enum Classes Generated for AUTOSAR Adaptive Applications” on page 5-34

Generate Code Only Check Box
If you do not select the Generate code only check box, the software produces an error message
when you build the model. The message states that you can build an executable with the AUTOSAR
system target file only if you:

• Configure the model to create a software-in-the-loop (SIL) or processor-in-the-loop (PIL) block
• Run the model in SIL or PIL simulation mode
• Provide a custom template makefile

AUTOSAR Compiler Abstraction Macros (Classic Platform)
The software does not generate AUTOSAR compiler abstraction macros for data or functions arising
from the following:

• Model blocks
• Stateflow
• MATLAB Coder
• Shared utility functions
• Custom storage classes
• Local or temporary variables

Preservation of Bus Element Dimensions in Exported ARXML and Code
Bus element dimensions are preserved in the exported ARXML and generated code when a model is
configured with the property Array layout set to Row-major. Previously, if a model contained a
Simulink.Bus data type that had a multidimensional array Simulink.BusElement, the exported
ARXML and generated code flattened the bus element to a one-dimensional array. Now, the generated
code and exported ARXML preserves the dimensionality as expected.

C++11 Style Scoped Enum Classes Generated for AUTOSAR Adaptive
Applications
To facilitate easier integration, by default the generated C++ code for AUTOSAR adaptive models
emit C++ 11 style scoped enum class data types in the generated code. You can view this data type
definition in the header file for enumerations located in the aragen/stub folder of the build folder.
This data type definition is standardized and validated prior to code generation.

5 AUTOSAR Code Generation

5-34

The following table shows a comparison of a scoped enum class definition versus the previously
generated code behavior for a dynamic enumeration:

Simulink.defineIntEnumType('BasicColors', ...
{'Red','Green','Blue'},...
[0;1;2],...
'DataScope','Auto',...
'StorageType','uint8')

Generated Enumeration Definition in Header File

Previous Behavior (C++03) Current Default Behavior (C++11)
#ifndef IMPL_TYPE_BASICCOLORS_H_
#define IMPL_TYPE_BASICCOLORS_H_
#include <cstdint>

using BasicColors = uint8_t;

const BasicColors Red = 0;
const BasicColors Green = 1;
const BasicColors Blue = 2;

#endif //IMPL_TYPE_BASICCOLORS_H_

#ifndef IMPL_TYPE_BASICCOLORS_H_
#define IMPL_TYPE_BASICCOLORS_H_
#include <cstdint>

enum class BasicColors : uint8_t {
 Red = 0,
 Green = 1,
 Blue = 2
};

#endif //IMPL_TYPE_BASICCOLORS_H_

The default behavior is determined by the default Language standard for a model set to C+
+11(ISO). If you configure this setting so that a model to generates C++ 03, then the generated
code emits the previous code definition behavior and may not compile if used with a third-party ara
generator.

 Limitations and Tips

5-35

AUTOSAR Adaptive Software Component
Modeling

• “Model AUTOSAR Adaptive Software Components” on page 6-2
• “Create and Configure AUTOSAR Adaptive Software Component” on page 6-6
• “Import AUTOSAR Adaptive Software Descriptions” on page 6-12
• “Import AUTOSAR Adaptive Components to Simulink” on page 6-13
• “Import AUTOSAR Package into Adaptive Component Model” on page 6-17
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37
• “Configure AUTOSAR Adaptive Software Components” on page 6-41
• “Model AUTOSAR Adaptive Service Communication” on page 6-50
• “Configure Memory Allocation for AUTOSAR Adaptive Service Data” on page 6-60
• “Configure AUTOSAR Adaptive Service Discovery Modes” on page 6-62
• “Configure AUTOSAR Adaptive Service Instance Identification” on page 6-64
• “Model AUTOSAR Adaptive Persistent Memory” on page 6-66
• “Generate AUTOSAR Adaptive C++ Code and XML Descriptions” on page 6-68
• “Configure AUTOSAR Adaptive Code Generation” on page 6-73
• “Configure AUTOSAR Adaptive Data for Run-Time Calibration and Measurement” on page 6-80
• “Build Library or Executable from AUTOSAR Adaptive Model” on page 6-82
• “Build Out of the Box Linux Executable from AUTOSAR Adaptive Model” on page 6-85
• “Configure Run-Time Logging for AUTOSAR Adaptive Executables” on page 6-88

6

Model AUTOSAR Adaptive Software Components
In Simulink, you can flexibly model the structure and behavior of software components for the
AUTOSAR Adaptive Platform.

The AUTOSAR Adaptive Platform defines a service-oriented architecture for automotive components
that must flexibly adapt to external events and conditions. Compared to the AUTOSAR Classic
Platform, the Adaptive Platform requires:

• High-performance computing, potentially with multiple cores and heterogeneous processor types.
• Fast communication, potentially with Ethernet or networks on chips.
• Strong service-based interaction among components.
• Ability to adapt running automotive applications to external events and information sources

(potentially for highly automated driving), as well as external communication, monitoring, and live
software updates.

An AUTOSAR adaptive system potentially contains multiple interconnected adaptive software
components. You deploy adaptive software components in the run-time environment defined by the
Adaptive Platform, AUTOSAR Runtime for Adaptive Applications (ARA).

An AUTOSAR adaptive software component provides and consumes services. The adaptive service
architecture is flexible, scalable, and distributed. Services can be discovered dynamically and can run
on local or remote Electronic Control Units (ECUs). Each software component contains:

• An automotive algorithm, which performs tasks in response to received events.
• Required and provided ports, each associated with a service interface, through which events are

received and sent.
• Service interfaces, which provide the framework for event-based communication, and their

associated events and namespaces.

To model an AUTOSAR adaptive software component in Simulink, you start with a model that
contains an automotive algorithm. From that model, you generate an AUTOSAR Dictionary that
defines service interfaces, and an AUTOSAR code perspective that maps Simulink model elements to
AUTOSAR component elements. As you further develop and refine the adaptive component in
Simulink, you can iteratively simulate and build the model.

When you complete the component implementation, you can combine the adaptive software
component model with other component models in an application-level simulation container model.
The end goal is to deploy the component as part of an application in the ARA environment.

Here is the high-level workflow for modeling software components based on the AUTOSAR Adaptive
Platform.

1 Open a Simulink model that either is empty or contains a functional algorithm.
2 Using the Model Configuration Parameters dialog box, configure the model for adaptive

AUTOSAR code generation. Set System target file to autosar_adaptive.tlc.
3 Develop the model algorithmic content for use in an AUTOSAR adaptive software component. If

the model is empty, construct or copy in an algorithm. Possible sources for algorithms include
algorithmic elements in other Simulink models. Examples include subsystems, referenced
models, MATLAB Function blocks, and C Caller blocks.

6 AUTOSAR Adaptive Software Component Modeling

6-2

4 At the top level of the model, set up event-based communication.

• After each root inport, add an Event Receive block, which converts an input event to a signal
while preserving the signal values and data type.

• Before each root outport, add an Event Send block, which converts an input signal to an event
while preserving the signal values and data type.

5 Map the algorithm model to an AUTOSAR adaptive software component. For example, in the
Apps tab, click AUTOSAR Component Designer. Because the model is unmapped, the
AUTOSAR Component Quick Start opens.

Work through the quick-start procedure. Click Finish to map the model. The model opens in the
AUTOSAR code perspective.

6 Using the AUTOSAR code perspective and the AUTOSAR Dictionary (or equivalent AUTOSAR
map and property functions), further refine the AUTOSAR adaptive model configuration.

• In the AUTOSAR code perspective, examine the mapping of Simulink inports and outports to
AUTOSAR required and provided ports and events.

 Model AUTOSAR Adaptive Software Components

6-3

• In the AUTOSAR Dictionary, examine the AUTOSAR properties for RequiredPorts,
ProvidedPorts, and Service Interfaces.

You can expand service interface nodes to examine their associated AUTOSAR events and
define namespaces for interface C++ code.

7 Build the AUTOSAR adaptive software component model. Building the model generates:

• C++ files that implement the model algorithms for the AUTOSAR Adaptive Platform and
provide shared data type definitions.

• AUTOSAR XML descriptions of the AUTOSAR adaptive software component and manifest
information for application deployment and service configuration.

• C++ files that implement a main program module.
• AUTOSAR Runtime Adaptive (ARA) environment header files.
• CMakeLists.txt file that supports CMake generation of executables.

For more information, see “Configure AUTOSAR Adaptive Software Components” on page 6-41.

See Also
Event Receive | Event Send

Related Examples
• “Configure AUTOSAR Adaptive Software Components” on page 6-41
• “Create and Configure AUTOSAR Adaptive Software Component” on page 6-6
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37

6 AUTOSAR Adaptive Software Component Modeling

6-4

• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21
• “Model AUTOSAR Adaptive Service Communication” on page 6-50
• “Configure AUTOSAR Adaptive Code Generation” on page 6-73

More About
• “Comparison of AUTOSAR Classic and Adaptive Platforms” on page 1-5

 Model AUTOSAR Adaptive Software Components

6-5

Create and Configure AUTOSAR Adaptive Software Component

Create an AUTOSAR adaptive software component model from an algorithm model.

AUTOSAR Blockset software supports AUTomotive Open System ARchitecture (AUTOSAR), an open
and standardized automotive software architecture. Automobile manufacturers, suppliers, and tool
developers jointly develop AUTOSAR components. To develop AUTOSAR adaptive components in
Simulink, follow this general workflow:

1 Create a Simulink representation of an AUTOSAR adaptive component.
2 Develop the component by refining the AUTOSAR configuration and creating algorithmic model

content.
3 Generate ARXML descriptions and algorithmic C++ code for testing in Simulink or integration

into an AUTOSAR run-time environment. (AUTOSAR code generation requires Simulink Coder
and Embedded Coder.)

Create AUTOSAR Adaptive Software Component in Simulink

To create an initial Simulink representation of an AUTOSAR adaptive software component, you take
one of these actions:

• Create an AUTOSAR adaptive software component using an existing Simulink model.
• Import an AUTOSAR adaptive software component description from ARXML files into a new

Simulink model. (See example “Import AUTOSAR Adaptive Components to Simulink” on page 6-
13.)

To create an AUTOSAR adaptive software component using an existing model, first open a Simulink
component model for which an AUTOSAR software component is not mapped. This example uses
AUTOSAR example model LaneGuidance.

open_system('LaneGuidance');

6 AUTOSAR Adaptive Software Component Modeling

6-6

In the model window, on the Modeling tab, select Model Settings. In the Configuration Parameters
dialog box, Code Generation pane, set the system target file to autosar_adaptive.tlc. Click OK.

At the top level of the model, set up event-based communication. An AUTOSAR adaptive software
component provides and consumes services. Each component contains:

• An algorithm that performs tasks in response to received events
• Required and provided ports, each associated with a service interface
• Service interfaces, with associated events and associated namespaces

AUTOSAR Blockset provides Event Receive and Event Send blocks to make the necessary event and
signal connections.

• After each root inport, add an Event Receive block, which converts an input event to a signal while
preserving the signal values and data type.

• Before each root outport, add an Event Send block, which converts an input signal to an event
while preserving the signal values and data type.

(To expedite the block insertion, you can copy the event blocks from AUTOSAR example model
autosar_LaneGuidance.)

 Create and Configure AUTOSAR Adaptive Software Component

6-7

To configure the model as a mapped AUTOSAR adaptive software component, open the AUTOSAR
Component Quick Start. On the Apps tab, click AUTOSAR Component Designer. The AUTOSAR
Component Quick Start opens.

6 AUTOSAR Adaptive Software Component Modeling

6-8

To configure the model for AUTOSAR adaptive software component development, work through the
quick-start procedure. This example accepts default settings for the options in the Quick Start Set
Component pane.

In the Finish pane, when you click Finish, your model opens in the AUTOSAR code perspective.

Configure AUTOSAR Adaptive Software Component in Simulink

The AUTOSAR code perspective displays your model, and directly below the model, the Code
Mappings editor.

Next you use the Code Mappings editor and the AUTOSAR Dictionary to further develop the
AUTOSAR adaptive component.

The Code Mappings editor displays model inports and outports. Use the editor to map Simulink
inports and outports to AUTOSAR required ports and provided ports (defined in the AUTOSAR
standard) from a Simulink model perspective.

 Create and Configure AUTOSAR Adaptive Software Component

6-9

Open each Code Mapping tab and examine the mapped model elements. To modify the AUTOSAR
mapping for an element, select an element and modify its associated properties. When you select an
element, it is highlighted in the model.

To configure the AUTOSAR properties of the mapped AUTOSAR adaptive software component, open
the AUTOSAR Dictionary. In the Code Mappings editor, click the AUTOSAR Dictionary button, which
is the leftmost icon. The AUTOSAR Dictionary opens in the AUTOSAR view that corresponds to the
Simulink element that you last selected and mapped in the Code Mappings editor. If you selected and
mapped a Simulink inport, the dictionary opens in RequiredPorts view and displays the AUTOSAR
port to which you mapped the inport.

The AUTOSAR Dictionary displays the mapped AUTOSAR adaptive component and its elements,
communication interfaces, and XML options. Use the dictionary to configure AUTOSAR elements and
properties from an AUTOSAR component perspective.

Open each node and examine its AUTOSAR elements. To modify an AUTOSAR element, select an
element and modify its associated properties. AUTOSAR XML and AUTOSAR-compliant C code
generated from the model reflect your modifications.

Generate C++ Code and ARXML Descriptions (Embedded Coder)

If you have Simulink Coder and Embedded Coder software, you can build the AUTOSAR adaptive
model. Building the AUTOSAR model generates AUTOSAR-compliant C++ code and exports
AUTOSAR XML (ARXML) descriptions. In the model window, press Ctrl+B or, on the AUTOSAR tab,
click Generate Code.

When the build completes, a code generation report opens. Examine the report. Verify that your Code
Mappings editor and AUTOSAR Dictionary changes are reflected in the C++ code and ARXML
descriptions. For example, use the Find field to search for the names of the Simulink model elements
and AUTOSAR component elements that you modified.

6 AUTOSAR Adaptive Software Component Modeling

6-10

Related Links

• “AUTOSAR Component Configuration” on page 4-3
• “Code Generation” (Adaptive Platform)
• “AUTOSAR Blockset”

 Create and Configure AUTOSAR Adaptive Software Component

6-11

Import AUTOSAR Adaptive Software Descriptions
You can import AUTOSAR XML (ARXML) descriptions of adaptive software components, service
interfaces, and data types into Simulink. Use the ARXML importer to:

• Create an initial Simulink representation of an AUTOSAR adaptive software component.
• Update a mapped AUTOSAR adaptive component model with shared ARXML definitions of service

interfaces and data types.

You can participate in round-trip exchanges of adaptive component ARXML descriptions between
Simulink and other development environments.

To create an initial Simulink representation of AUTOSAR adaptive software component from an
ARXML component description, use the ARXML importer function createComponentAsModel. For
example:
ar = arxml.importer('myAdaptiveSWC.arxml')
createComponentAsModel(ar,'/Company/Components/Swc')

For a detailed example, see “Import AUTOSAR Adaptive Components to Simulink” on page 6-13.

To update a mapped AUTOSAR adaptive component model with shared ARXML definitions, use the
ARXML importer function updateAUTOSARProperties. For example:
modelName = 'my_adaptive_swc';
open_system(modelName);
ar = arxml.importer('ServiceInterfaces.arxml');
updateAUTOSARProperties(ar,modelName);

For a detailed example, see “Import AUTOSAR Package into Adaptive Component Model” on page 6-
17.

See Also
createComponentAsModel | updateAUTOSARProperties

Related Examples
• “Import AUTOSAR Adaptive Components to Simulink” on page 6-13
• “Import AUTOSAR Package into Adaptive Component Model” on page 6-17
• “Configure AUTOSAR Adaptive XML Options” on page 6-33
• “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-

37

More About
• “AUTOSAR ARXML Importer” on page 3-35
• “Workflows for AUTOSAR” on page 1-13

6 AUTOSAR Adaptive Software Component Modeling

6-12

Import AUTOSAR Adaptive Components to Simulink

Create Simulink® models from XML descriptions of AUTOSAR adaptive software components.

Import AUTOSAR Adaptive Components from ARXML Files to Simulink

Use the MATLAB function createComponentAsModel to import AUTOSAR XML (ARXML) adaptive
software component descriptions and create Simulink models.

First, parse the ARXML description files and list the components they contain.

ar = arxml.importer({'fusion_app.arxml','radarService_app_mod.arxml','radar_svc_mod.arxml','stdtypes_mod.arxml'});
names = getComponentNames(ar)

names = 2x1 cell
 {'/RadarFusion/fusion' }
 {'/RadarFusion/radarService'}

For each listed adaptive software component, use createComponentAsModel to create a Simulink
representation. These commands create models named fusion and radarService.

createComponentAsModel(ar,'/RadarFusion/fusion');
createComponentAsModel(ar,'/RadarFusion/radarService');

Each created model contains:

• Simulink elements configured to model AUTOSAR adaptive component elements.
• An AUTOSAR dictionary, which stores the imported AUTOSAR adaptive element definitions.
• A mapping of the Simulink model elements to the AUTOSAR adaptive component elements.

 Import AUTOSAR Adaptive Components to Simulink

6-13

In each model:

• Simulink ports represent AUTOSAR adaptive component provide and require ports.
• After each root inport, an Event Receive block converts an input event to a signal while preserving

the signal values and data type.
• Before each root outport, an Event Send block converts an input signal to an event while

preserving the signal values and data type.
• The ports are stubbed with Ground and Terminator blocks so that the model can immediately be

updated and simulated.

Configure AUTOSAR Adaptive Software Component in Simulink

After you create an AUTOSAR adaptive software component model, use the AUTOSAR Component
Designer app to refine the configuration of the AUTOSAR adaptive component.

Open an adaptive component model. On the Apps tab, select AUTOSAR Component Designer. The
AUTOSAR tab opens.

To view the mapping of Simulink model elements to AUTOSAR adaptive component elements, open
the Code Mappings pane. Use this view to map model elements to AUTOSAR component elements
from a Simulink model perspective.

6 AUTOSAR Adaptive Software Component Modeling

6-14

To view AUTOSAR adaptive element definitions, on the AUTOSAR tab, select Code Interface >
AUTOSAR Dictionary. The dictionary opens. Use this view to configure AUTOSAR elements from an
AUTOSAR component perspective.

For more information, see “AUTOSAR Component Configuration” on page 4-3.

 Import AUTOSAR Adaptive Components to Simulink

6-15

Develop AUTOSAR Adaptive Component Algorithms, Simulate, and Generate Code

After you create an AUTOSAR adaptive software component model and refine the configuration, you
develop the component. Create algorithmic model content that implements the component
requirements.

For example, the fusion component model that you created contains an initial stub implementation
of the component behavior.

To implement the component requirements, replace the Terminator blocks with blocks that
implement Simulink algorithms.

As you develop AUTOSAR adaptive components, you can:

• Simulate the component model individually or in a containing composition or test harness.
• Generate ARXML component description files and algorithmic C++ code for testing in Simulink or

integration into an AUTOSAR run-time environment. (AUTOSAR code generation requires
Simulink Coder and Embedded Coder.)

For more information, see “Component Development” and “Code Generation”.

Related Links

• createComponentAsModel
• “Component Creation”
• “AUTOSAR Component Configuration” on page 4-3
• “Component Development”
• “Code Generation”

6 AUTOSAR Adaptive Software Component Modeling

6-16

Import AUTOSAR Package into Adaptive Component Model

Import and reference shared ARXML element definitions for the Adaptive Platform.

Add AUTOSAR Adaptive Element Definitions to Model

When developing an AUTOSAR adaptive software component in Simulink, you can import AUTOSAR
element definitions that are common to many components. After you create an AUTOSAR adaptive
component model, you import the definitions from AUTOSAR XML (ARXML) files that contain
packages of AUTOSAR shared elements. To help implement the component behavior, you want to
reference predefined elements such as service interfaces, with their associated events and
namespaces, and data types.

Suppose that you are developing an AUTOSAR adaptive software component model. You want to
import predefined adaptive platform type elements that are shared by multiple product lines and
teams. This example uses AUTOSAR importer function updateAUTOSARProperties to import
definitions from shared descriptions file Adaptive_PlatformTypes.arxml into example model
autosar_LaneGuidance.

modelName = 'autosar_LaneGuidance';
open_system(modelName);
ar = arxml.importer('Adaptive_PlatformTypes.arxml');
updateAUTOSARProperties(ar,modelName);

Updating model autosar_LaneGuidance
Saving original model as autosar_LaneGuidance_backup.slx
Creating HTML report autosar_LaneGuidance_update_report.html

The function copies the elements in the specified ARXML files to the AUTOSAR Dictionary of the
specified model. If you import data types, the function also creates data objects, in a data dictionary
(if available) or in the base workspace, for the imported types.

The function generates an HTML report listing the workspace changes and the element additions.
Here are the Simulink workspace changes, reflecting creation of data objects to represent previously
undefined adaptive platform types.

Here are the AUTOSAR element additions. Notice that the function created a new AUTOSAR package
named AUTOSAR_Platform. Based on the imported adaptive platform types, the function populated
the package with AUTOSAR software base types and AUTOSAR implementation data types.

 Import AUTOSAR Package into Adaptive Component Model

6-17

6 AUTOSAR Adaptive Software Component Modeling

6-18

The package changes are reflected in the AUTOSAR Dictionary views of the package tree. If you open
the AUTOSAR Dictionary and navigate to an individual service interface, you can click the horizontal
ellipsis to the right of the Package field to view the current package tree.

Reference and Configure Imported AUTOSAR Adaptive Elements

After importing AUTOSAR elements into the adaptive software component model, you can reference
and configure the elements in the same manner as any AUTOSAR Dictionary element.

If you imported data types, you can reference the types from your model blocks. For example, open a
Simulink port block in your model and select the Signal Attributes tab. Expand the Data type list of
values and notice that the imported data types are available for selection.

 Import AUTOSAR Package into Adaptive Component Model

6-19

If you have Simulink Coder and Embedded Coder software, you can generate AUTOSAR-compliant C
++ code and export ARXML descriptions from the adaptive component model. The C++ code reflects
references from model blocks to the imported adaptive elements. Export preserves the file structure
and content of the shared descriptions files from which you imported definitions. In ARXML files
other than the shared description files, ARXML descriptions reference the shared element definitions
where required.

Related Links

• updateAUTOSARProperties
• “Import AUTOSAR Adaptive Software Descriptions” on page 6-12
• “AUTOSAR ARXML Importer” on page 3-35

6 AUTOSAR Adaptive Software Component Modeling

6-20

Configure AUTOSAR Adaptive Elements and Properties
In Simulink, you can use the AUTOSAR Dictionary and the Code Mappings editor separately or
together to graphically configure an AUTOSAR adaptive software component and map Simulink
model elements to AUTOSAR component elements. For more information, see “AUTOSAR Component
Configuration” on page 4-3.

Use the AUTOSAR Dictionary to configure AUTOSAR elements from an AUTOSAR perspective. Using
a tree format, the AUTOSAR Dictionary displays a mapped AUTOSAR adaptive component and its
elements, communication interfaces, and XML options. Use the tree to select AUTOSAR elements and
configure their properties. The properties that you modify are reflected in exported ARXML
descriptions and potentially in generated AUTOSAR-compliant C++ code.

In this section...
“AUTOSAR Elements Configuration Workflow” on page 6-21
“Configure AUTOSAR Adaptive Software Components” on page 6-22
“Configure AUTOSAR Adaptive Service Interfaces and Ports” on page 6-25
“Configure AUTOSAR Adaptive Persistent Memory Interfaces and Ports” on page 6-30
“Configure AUTOSAR Adaptive XML Options” on page 6-33

AUTOSAR Elements Configuration Workflow
To configure AUTOSAR component elements for the Adaptive Platform in Simulink:

1 Open a model for which the AUTOSAR system target file autosar_adaptive.tlc is selected.
2 Create or open a mapped view of the AUTOSAR model. In the model window, do one of the

following:

• From the Apps tab, open the AUTOSAR Component Designer app.
• Click the perspective control in the lower-right corner and select Code.

If the model has not yet been mapped to an AUTOSAR software component, the AUTOSAR
Component Quick Start opens. Work through the quick-start procedure and click Finish. For
more information, see “Create Mapped AUTOSAR Component with Quick Start” on page 3-2.

The model opens in the AUTOSAR Code perspective. This perspective displays the model and
directly below the model, the Code Mappings editor.

3 Open the AUTOSAR Dictionary. Either click the AUTOSAR Dictionary button in the Code
Mappings editor or, on the AUTOSAR tab, select Code Interface > AUTOSAR Dictionary.

4 To configure AUTOSAR elements and properties, navigate the AUTOSAR Dictionary tree. You can
add elements, remove elements, or select elements to view and modify their properties. Use the
Filter Contents field (where available) to selectively display some elements, while omitting
others, in the current view.

 Configure AUTOSAR Adaptive Elements and Properties

6-21

5 After configuring AUTOSAR adaptive elements and properties, open the Code Mappings editor.
Use Code Mapping tabs to map Simulink elements to new or modified AUTOSAR elements.

6 To validate the AUTOSAR component configuration, click the Validate button . If errors are
reported, address them, and then retry validation.

Configure AUTOSAR Adaptive Software Components
AUTOSAR adaptive software components contain AUTOSAR elements defined in the AUTOSAR
standard, such as required ports and provided ports. In the AUTOSAR Dictionary, component
elements appear in a tree format under the component that owns them. To access component
elements and their properties, expand the component name.

6 AUTOSAR Adaptive Software Component Modeling

6-22

To configure AUTOSAR adaptive software component elements and properties:

1 Open a model for which a mapped AUTOSAR adaptive software component has been created. For
more information, see “Component Creation”.

2 From the Apps tab, open the AUTOSAR Component Designer app.
3 Open the AUTOSAR Dictionary. Either click the AUTOSAR Dictionary button in the Code

Mappings editor or, on the AUTOSAR tab, select Code Interface > AUTOSAR Dictionary.
4 In the leftmost pane of the AUTOSAR Dictionary, under AUTOSAR, select

AdaptiveApplications.

The adaptive applications view in the AUTOSAR Dictionary displays adaptive software
components. You can rename an AUTOSAR adaptive component by editing its name text.

 Configure AUTOSAR Adaptive Elements and Properties

6-23

5 In the leftmost pane of the AUTOSAR Dictionary, expand AdaptiveApplications and select an
AUTOSAR adaptive component.

The component view in the AUTOSAR Dictionary displays the name and type of the selected
component, and component options for ARXML file export. You can modify the AUTOSAR
package to be generated for the component.

To specify the AUTOSAR package path, you can do either of the following:

• Enter a package path in the Package parameter field. Package paths can use an
organizational naming pattern, such as /CompanyName/Powertrain.

• To open the AUTOSAR Package Browser, click the button to the right of the Package field.
Use the browser to navigate to an existing package or create a package. When you select a
package in the browser and click Apply, the component Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

For more information about component XML options, see “Configure AUTOSAR Packages” on
page 4-84.

6 AUTOSAR Adaptive Software Component Modeling

6-24

Configure AUTOSAR Adaptive Service Interfaces and Ports
An AUTOSAR adaptive software component uses communication interfaces and ports defined in the
AUTOSAR standard, including adaptive service interfaces and required and provided ports. In the
AUTOSAR Dictionary, communication interfaces appear in a tree format.

• To access service interfaces and their properties, expand the Service Interfaces node and select
an interface.

• To access required and provided ports and their properties, expand an application node and select
either RequiredPorts or ProvidedPorts.

The interface and port views in the AUTOSAR Dictionary support modeling AUTOSAR adaptive
service communication in Simulink. You use the AUTOSAR Dictionary to first configure AUTOSAR
service interfaces, events, and C++ namespaces, and then configure required and provided ports. For
more information, see “Model AUTOSAR Adaptive Service Communication” on page 6-50.

To configure AUTOSAR service interface elements and properties, open a model for which a mapped
AUTOSAR adaptive software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, select Service Interfaces.

The service interfaces view in the AUTOSAR Dictionary lists AUTOSAR service interfaces and
their properties. You can:

• Select a service interface and rename it by editing its name text.
•

To add a service interface, click the Add button and use the Add Interfaces dialog box.
Specify an interface name, the number of events it contains, and the path of the Interface
package.

•
To remove a service interface, select the interface and then click the Delete button .

 Configure AUTOSAR Adaptive Elements and Properties

6-25

2 In the leftmost pane of the AUTOSAR Dictionary, expand Service Interfaces and select a service
interface from the list.

The service interface view in the AUTOSAR Dictionary displays the name of the selected service
interface and the AUTOSAR package to be generated for the interface.

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• To open the AUTOSAR Package Browser, click the button to the right of the Package field.

Use the browser to navigate to an existing package or create a package. When you select a
package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

3 In the leftmost pane of the AUTOSAR Dictionary, expand the selected interface and select
Events.

The events view in the AUTOSAR Dictionary lists AUTOSAR service interface events and their
properties. You can:

• Select a service interface event and edit the name value.

6 AUTOSAR Adaptive Software Component Modeling

6-26

• Specify the level of calibration and measurement tool access to service interface events.
Select an event and set its SwCalibrationAccess value to ReadOnly, ReadWrite, or
NotAccessible.

• Optionally specify the format to be used by calibration and measurement tools to display the
event. In the DisplayFormat field, enter an ANSI C printf format specifier string. For
example, %2.1d specifies a signed decimal number. The number has a minimum width of two
characters and a maximum precision of one digit, producing a displayed value such as 12.2.
For more information about constructing a format specifier string, see “Configure
DisplayFormat” on page 4-265.

•
To add an event, click the Add button .

•
To remove an event, select the event and then click the Delete button .

4 In the leftmost pane of the AUTOSAR Dictionary, below Events, select Namespaces.

The namespaces view in the AUTOSAR Dictionary enables you to define a unique namespace for
each service interface. The code generator uses the defined namespace when producing C++
code for the interface. To modify or construct a namespace specification, you can:

• Select a namespace element and edit the name value.
•

To add a namespace element to the namespace specification, click the Add button .
•

To remove a namespace element, select the element and then click the Delete button .

For example, this namespaces view defines namespace company::chassis::provided for
service interface ProvidedInterface.

 Configure AUTOSAR Adaptive Elements and Properties

6-27

To configure AUTOSAR required and provided port elements, open a model for which a mapped
AUTOSAR adaptive software component has been created and open the AUTOSAR Dictionary.

1 In the leftmost pane of the AUTOSAR Dictionary, expand the component name and select
RequiredPorts.

The required ports view in the AUTOSAR Dictionary lists required ports and their properties. You
can:

• Select an AUTOSAR required port, and view and optionally reselect its associated service
interface.

• Rename a required port by editing its name text.
• To configure adaptive service instance identification for a required port, select the port and

view its Manifest attributes. Based on the service instance form selected in XML options,
examine the value for Instance Specifier or Instance Identifier. You can enter a value or
accept an existing value. For more information, see “Configure AUTOSAR Adaptive Service
Instance Identification” on page 6-64.

• To configure the adaptive service discovery behavior for a required port, select the port and
view its Service Discovery Mode. You can select mode OneTime or DynamicDiscovery.
For more information, see “Configure AUTOSAR Adaptive Service Discovery Modes” on page
6-62.

•
To add a required port, click the Add button and use the Add Ports dialog box. Specify a
port name and associate it with an existing service interface.

•
To remove a required port, select the port and then click the Delete button .

6 AUTOSAR Adaptive Software Component Modeling

6-28

2 In the leftmost pane of the AUTOSAR Dictionary, select ProvidedPorts.

The provided ports view in the AUTOSAR Dictionary lists provided ports and their properties. You
can:

• Select an AUTOSAR provided port, and view and optionally reselect its associated service
interface.

• Rename a provided port by editing its name text.
• To configure adaptive service instance identification for a provided port, select the port and

view its Manifest attributes. Based on the service instance form selected in XML options,
examine the value for Instance Specifier or Instance Identifier. You can enter a value or
accept an existing value. For more information, see “Configure AUTOSAR Adaptive Service
Instance Identification” on page 6-64.

•
To add a provided port, click the Add button and use the Add Ports dialog box. Specify a
port name and associate it with an existing service interface.

•
To remove a provided port, select the port and then click the Delete button .

 Configure AUTOSAR Adaptive Elements and Properties

6-29

To map Simulink root inports and outports to AUTOSAR required and provided service ports and
service interface events, see “Map Inports and Outports to AUTOSAR Service Ports and Events” on
page 6-39.

Configure AUTOSAR Adaptive Persistent Memory Interfaces and Ports
An AUTOSAR adaptive software component uses communication interfaces and ports defined in the
AUTOSAR standard, including adaptive persistency key value interfaces and persistency provided-
required ports. In the AUTOSAR Dictionary, interfaces and ports appear in a tree format.

• To access persistent memory interfaces and their properties, expand the Persistency Key Value
Interfaces node and select an interface.

• To access persistent memory ports and their properties, expand an application node and select
PersistencyProvidedRequiredPorts.

The interface and port views in the AUTOSAR Dictionary support modeling AUTOSAR adaptive
persistent memory in Simulink. You use the AUTOSAR Dictionary to first configure AUTOSAR
persistency key value interfaces and data elements, and then configure persistency provided-required
ports. For more information, see “Model AUTOSAR Adaptive Persistent Memory” on page 6-66.

To configure AUTOSAR adaptive persistency key value interfaces, open a model for which a mapped
AUTOSAR adaptive software component has been created and open the AUTOSAR Dictionary.

6 AUTOSAR Adaptive Software Component Modeling

6-30

1 In the leftmost pane of the AUTOSAR Dictionary, select Persistency Key Value Interfaces.

This view in the AUTOSAR Dictionary lists AUTOSAR persistency key value interfaces and their
properties. You can:

• Select a persistency interface and rename it by editing its name text.
•

To add a persistency interface, click the Add button and use the Add Interfaces dialog
box. Specify an interface name, the number of data elements it contains, and the path of the
Interface package.

•
To remove a persistency interface, select the interface and then click the Delete button .

2 In the leftmost pane of the AUTOSAR Dictionary, expand Persistency Key Value Interfaces and
select a persistency interface from the list.

The persistency interface view in the AUTOSAR Dictionary displays the name of the selected
persistency interface and the AUTOSAR package to be generated for the interface.

To modify the AUTOSAR package for the interface, you can do either of the following:

• Enter a package path in the Package parameter field.
• To open the AUTOSAR Package Browser, click the button to the right of the Package field.

Use the browser to navigate to an existing package or create a package. When you select a
package in the browser and click Apply, the interface Package parameter value is updated
with your selection. For more information about the AUTOSAR Package Browser, see
“Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod”
on page 4-93.

 Configure AUTOSAR Adaptive Elements and Properties

6-31

3 In the leftmost pane of the AUTOSAR Dictionary, expand the selected interface and select
DataElements.

The data elements view in the AUTOSAR Dictionary lists AUTOSAR persistency interface data
elements and their properties. You can:

• Select a persistency interface data element and edit the name value.
•

To add a data element, click the Add button .
•

To remove a data element, select the data element and then click the Delete button .

To configure AUTOSAR adaptive persistency provided-required port elements, open a model for
which a mapped AUTOSAR adaptive software component has been created and open the AUTOSAR
Dictionary.

In the leftmost pane of the AUTOSAR Dictionary, select PersistencyProvidedRequiredPorts. This
view in the AUTOSAR Dictionary lists AUTOSAR persistency provided-required ports and their
properties. You can:

• Select an AUTOSAR persistency provided-required port and select or modify its associated
persistency key value interface.

• Rename a persistency port by editing its name text.
•

To add a persistency port, click the Add button and use the Add Ports dialog box. Specify a
port name and associate it with an existing persistency key value interface.

•
To remove a persistency port, select the port and then click the Delete button .

6 AUTOSAR Adaptive Software Component Modeling

6-32

To map Simulink data stores to AUTOSAR persistency provided-required ports and key value
interface data elements, see “Map Data Stores to AUTOSAR Persistent Memory Ports and Data
Elements” on page 6-39.

Configure AUTOSAR Adaptive XML Options
To configure AUTOSAR adaptive XML options for ARXML export, open a model for which a mapped
AUTOSAR adaptive software component has been created and open the AUTOSAR Dictionary. Select
XML Options.

The XML options view in the AUTOSAR Dictionary displays XML export parameters and their values.
You can configure:

• XML file packaging for AUTOSAR elements created in Simulink
• AUTOSAR package paths
• Aspects of exported AUTOSAR XML content

 Configure AUTOSAR Adaptive Elements and Properties

6-33

• “Exported XML File Packaging” on page 6-34
• “AUTOSAR Package Paths” on page 6-35
• “Additional XML Options” on page 6-35

Exported XML File Packaging

In the XML options view, you can specify the granularity of XML file packaging for AUTOSAR
elements created in Simulink. Imported AUTOSAR XML files retain their file structure, as described
in “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-
37. Select one of the following values for Exported XML file packaging.

• Single file — Exports XML into a single file, modelname.arxml.
• Modular — Exports XML into multiple files, named according to the type of information

contained.

Exported File Name File Contents
modelname_component.arxml Adaptive software components, including required and provided

ports.

This file is the main ARXML file exported for the Simulink model. In
addition to software components, the component file contains
packageable elements that the exporter does not move to data type
or interface files based on AUTOSAR element category.

modelname_datatype.arxml Data types and related elements, including:

• Application data types
• Standard Cpp implementation data types
• Constant specifications
• Physical data constraints
• Units and unit groups
• Software record layouts

modelname_interface.arxml Adaptive interfaces, including required and provided service
interfaces with namespaces and events.

Alternatively, you can programmatically configure exported XML file packaging by calling the
AUTOSAR set function. For property ArxmlFilePackaging, specify either SingleFile or
Modular. For example:
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ArxmlFilePackaging','SingleFile');

6 AUTOSAR Adaptive Software Component Modeling

6-34

For the Adaptive Platform, model builds also generate XML manifests for AUTOSAR executables and
service instances. For more information, see “Generate AUTOSAR Adaptive C++ and XML Files” on
page 6-77.

AUTOSAR Package Paths

In the XML options view, you can configure AUTOSAR packages (AR-PACKAGEs), which contain
groups of AUTOSAR elements and reside in a hierarchical AR-PACKAGE structure. The AR-PACKAGE
structure for a component is logically distinct from the ARXML file partitioning selected with the XML
option Exported XML file packaging or imported from AUTOSAR XML files. For more information
about AUTOSAR packages, see “Configure AUTOSAR Packages” on page 4-84.

Inspect and modify the AUTOSAR package paths grouped under the headings Package Paths and
Additional Packages.

Alternatively, you can programmatically configure an AUTOSAR package path by calling the
AUTOSAR set function. Specify a package property name and a package path. For example:
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ApplicationDataTypePackage',...
 '/Company/Powertrain/DataTypes/ApplDataTypes');

For more information about AUTOSAR package property names and defaults, see “Configure
AUTOSAR Packages and Paths” on page 4-86.

Additional XML Options

In the XML options view, under the heading Additional Options, you can configure aspects of
exported AUTOSAR XML content.

You can:

 Configure AUTOSAR Adaptive Elements and Properties

6-35

• Optionally override the default behavior for generating AUTOSAR application data types in
ARXML code. To force generation of an application data type for each AUTOSAR data type,
change the value of ImplementationDataType Reference from Allowed to NotAllowed. For
more information, see “Control Application Data Type Generation” on page 4-244.

• Control the default value of the SwCalibrationAccess property of generated AUTOSAR
measurement variables, calibration parameters, and signal and parameter data objects. For
SwCalibrationAccess DefaultValue, select one of the following values:

• ReadOnly — Read access only.
• ReadWrite (default) — Read and write access.
• NotAccessible — Not accessible with calibration and measurement tools.

For more information, see “Configure SwCalibrationAccess” on page 4-263.
• Optionally override the default behavior for generating internal data constraint information for

AUTOSAR implementation data types in ARXML code. To force export of internal data constraints
for implementation data types, select the option Internal DataConstraints Export. For more
information, see “Configure AUTOSAR Internal Data Constraints Export” on page 4-246.

• Specify the form in which to generate adaptive service instance information. Set Identify Service
Instance Using to InstanceIdentifier or InstanceSpecifier. The form that you select is
used to identify service instances in generated Proxy and Skeleton functions. For more
information, see “Configure AUTOSAR Adaptive Service Instance Identification” on page 6-64.

Alternatively, you can programmatically configure the additional XML options by calling the
AUTOSAR set function. Specify a property name and value. The valid property names are
ImplementationTypeReference, SwCalibrationAccessDefault,
InternalDataConstraintExport, and IdentifyServiceInstance. For example:
arProps = autosar.api.getAUTOSARProperties(hModel);
set(arProps,'XmlOptions','ImplementationTypeReference','NotAllowed');
set(arProps,'XmlOptions','SwCalibrationAccessDefault','ReadOnly');
set(arProps,'XmlOptions','InternalDataConstraintExport',true);
set(arProps,'XmlOptions','IdentifyServiceInstance','InstanceSpecifier')

See Also

Related Examples
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294
• “Configure AUTOSAR Adaptive Code Generation” on page 6-73

More About
• “AUTOSAR Component Configuration” on page 4-3

6 AUTOSAR Adaptive Software Component Modeling

6-36

Map AUTOSAR Adaptive Elements for Code Generation
In Simulink, you can use the Code Mappings editor and the AUTOSAR Dictionary separately or
together to graphically configure an AUTOSAR adaptive software component and map Simulink
model elements to AUTOSAR component elements. For more information, see “AUTOSAR Component
Configuration” on page 4-3.

Use the Code Mappings editor to map Simulink model elements to AUTOSAR component elements
from a Simulink model perspective. The editor display consists of tabbed tables, including Inports
and Outports. Use the tables to select Simulink elements and map them to corresponding AUTOSAR
elements. The mappings that you configure are reflected in generated AUTOSAR-compliant C++ code
and exported ARXML descriptions.

In this section...
“Simulink to AUTOSAR Mapping Workflow” on page 6-37
“Map Inports and Outports to AUTOSAR Service Ports and Events” on page 6-39
“Map Data Stores to AUTOSAR Persistent Memory Ports and Data Elements” on page 6-39

Simulink to AUTOSAR Mapping Workflow
To map Simulink model elements to AUTOSAR adaptive software component elements:

1 Open a model for which AUTOSAR system target file autosar_adaptive.tlc is selected.
2 Create or open a mapped view of the AUTOSAR model. In the model window, do one of the

following:

• From the Apps tab, open the AUTOSAR Component Designer app.
• Click the perspective control in the lower-right corner and select Code.

If the model has not yet been mapped to an AUTOSAR software component, the AUTOSAR
Component Quick Start opens. To configure the model for AUTOSAR component development,
work through the quick-start procedure and click Finish. For more information, see “Create
Mapped AUTOSAR Component with Quick Start” on page 3-2.

The model opens in the AUTOSAR Code perspective. This perspective displays the model and
directly below the model, the Code Mappings editor.

 Map AUTOSAR Adaptive Elements for Code Generation

6-37

The Code Mappings editor provides in-canvas access to AUTOSAR mapping information, with
batch editing, element filtering, easy navigation to model elements and AUTOSAR properties,
and model element traceability.

3 Navigate the Code Mappings editor tabs to perform these actions:

• Map a Simulink inport or outport to an AUTOSAR required or provided port and a service
interface event.

• Map a Simulink data store to an AUTOSAR persistency provided-required port and a key
value interface data element.

Use the Filter contents field (where available) to selectively display some elements, while
omitting others, in the current view.

4 After mapping model elements, click the Validate button to validate the AUTOSAR
component configuration. If errors are reported, address them, and then retry validation.

6 AUTOSAR Adaptive Software Component Modeling

6-38

Map Inports and Outports to AUTOSAR Service Ports and Events
The Inports and Outports tabs of the Code Mappings editor support modeling AUTOSAR service
interface communication in Simulink. After using the AUTOSAR Dictionary to create AUTOSAR
required and provided service ports, service interfaces, and service interface events in your model,
open the Code Mappings editor. Use the Inports and Outports tabs to map Simulink root inports and
outports to AUTOSAR required and provided service ports and service interface events.

For more information, see “Model AUTOSAR Adaptive Service Communication” on page 6-50.

The Inports tab of the Code Mappings editor maps each Simulink root inport to an AUTOSAR
required port and a service interface event. To map a Simulink inport, select the inport, and then
select menu values for an AUTOSAR port and an AUTOSAR event among values listed for the
component.

The Outports tab of the Code Mappings editor maps each Simulink root outport to an AUTOSAR
provided port and a service interface event. In the Outports tab, you can:

• Map a Simulink outport by selecting the outport, and then selecting menu values for an AUTOSAR
port and an AUTOSAR event among values listed for the component.

• Use the code attribute AllocateMemory to configure memory allocation for AUTOSAR adaptive
service data. Specify whether to send event data by reference (the default) or by ara::com
allocated memory. To send event data by ara::com allocated memory, select the value true. To
send event data by reference, select false. For more information, see “Configure Memory
Allocation for AUTOSAR Adaptive Service Data” on page 6-60.

Map Data Stores to AUTOSAR Persistent Memory Ports and Data
Elements
The Data Stores tab of the Code Mappings editor supports modeling AUTOSAR persistent memory in
Simulink. After using the AUTOSAR Dictionary to create AUTOSAR persistency provided-required
ports, persistency key value interfaces, and key value interface data elements, open the Code
Mappings editor. Use the Data Stores tab to map Simulink data stores to AUTOSAR persistency
provided-required ports and key value interface data elements.

 Map AUTOSAR Adaptive Elements for Code Generation

6-39

For more information, see “Model AUTOSAR Adaptive Persistent Memory” on page 6-66.

To map a Simulink data store, select a data store in the Data Stores tab and, in the Mapped To
menu, select Persistency. By default the data stores are mapped to Auto.

To configure the AUTOSAR persistency provided-required port and key value interface data element

for the mapped data store, click the icon. A properties dialog box opens. Select menu values for
Port and Data Element.

Attribute Purpose
Port Select the name of a persistency provided-

required port configured in the AUTOSAR
Dictionary.

DataElement Select the name of a persistency key value
interface data element configured in the
AUTOSAR Dictionary.

See Also

Related Examples
• “Model AUTOSAR Adaptive Service Communication” on page 6-50
• “Configure Memory Allocation for AUTOSAR Adaptive Service Data” on page 6-60
• “Model AUTOSAR Adaptive Persistent Memory” on page 6-66
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21
• “Configure and Map AUTOSAR Component Programmatically” on page 4-294

More About
• “AUTOSAR Component Configuration” on page 4-3
• “Code Generation”

6 AUTOSAR Adaptive Software Component Modeling

6-40

Configure AUTOSAR Adaptive Software Components
In Simulink, you can flexibly model the structure and behavior of software components for the
AUTOSAR Adaptive Platform. The AUTOSAR Adaptive Platform defines a service-oriented
architecture for automotive components that must flexibly adapt to external events and conditions.

An AUTOSAR adaptive software component provides and consumes services. Each software
component contains:

• An automotive algorithm, which performs tasks in response to received events.
• Required and provided ports, each associated with a service interface.
• Service interfaces, with associated events and associated namespaces.

For more information, see “Model AUTOSAR Adaptive Software Components” on page 6-2.

This example configures a Simulink representation of an automotive algorithm as an AUTOSAR
adaptive software component. The configuration steps use example models LaneGuidance and
autosar_LaneGuidance.

1 Open a Simulink model that either is empty or contains a functional algorithm. This example uses
ERT algorithm model LaneGuidance.

2 Using the Model Configuration Parameters dialog box, Code Generation pane, configure the
model for adaptive AUTOSAR code generation. Set System target file to
autosar_adaptive.tlc. Apply the change.

 Configure AUTOSAR Adaptive Software Components

6-41

The new setting affects other model settings. For example, the target file selection:

• Sets Language to C++.
• Selects Generate code only.
• Sets Toolchain to AUTOSAR Adaptive | CMake.
• Sets Interface > Code interface packaging to C++ class.

3 Develop the model algorithmic content for use in an AUTOSAR adaptive software component. If
the model is empty, construct or copy in an algorithm. Possible sources for algorithms include
algorithmic elements in other Simulink models. Examples include subsystems, referenced
models, MATLAB Function blocks, and C Caller blocks.

4 At the top level of the model, set up event-based communication, which the AUTOSAR Adaptive
Platform requires for AUTOSAR required and provided ports. AUTOSAR Blockset provides Event
Receive and Event Send blocks to make the necessary event/signal connections.

• After each root inport, add an Event Receive block, which converts an input event to a signal
while preserving the signal values and data type.

• Before each root outport, add an Event Send block, which converts an input signal to an event
while preserving the signal values and data type.

Note Alternatively, you can skip this step. A later step provides a finished mapped model with
event conversion blocks included.

Here is example model LaneGuidance with the event blocks added and connected.

6 AUTOSAR Adaptive Software Component Modeling

6-42

5 Map the algorithm model to an AUTOSAR adaptive software component.

a To map the algorithm model, in the Apps tab, click AUTOSAR Component Designer. In
this example the AUTOSAR Component Quick Start opens because the model is unmapped.
Otherwise, to map algorithm information you can click the perspective control in the lower-
right corner and select Code, or use the API to call MATLAB function
autosar.api.create(modelName).

b Work through the quick-start procedure. Click Finish to map the model.
c The model opens in the AUTOSAR Code perspective. The perspective displays the mapping

of Simulink elements to AUTOSAR adaptive software component elements and an AUTOSAR
Dictionary, which contains AUTOSAR adaptive component elements with default properties.

 Configure AUTOSAR Adaptive Software Components

6-43

6 If you completed the adaptive configuration steps, save the AUTOSAR adaptive software
component model with a unique name.

If you skipped any steps, open an example of a finished mapped AUTOSAR adaptive software
component, example model autosar_LaneGuidance.

7 Using the AUTOSAR Code perspective and the AUTOSAR Dictionary (or equivalent AUTOSAR
map and property functions), further refine the AUTOSAR adaptive model configuration.

• In the model window, check model data to see if you need to make post-mapping adjustments
to types or other attributes. For example, verify that event data is configured correctly for
your design.

• In the AUTOSAR Code perspective, examine the mapping of Simulink inports and outports to
AUTOSAR required and provided ports and events.

• To open the AUTOSAR Dictionary, select an inport or outport and click the AUTOSAR
Dictionary button . The dictionary opens in the view of the corresponding mapped
AUTOSAR port.

6 AUTOSAR Adaptive Software Component Modeling

6-44

Select a port to configure its AUTOSAR attributes, such as manifest attributes or, for required
ports, a service discovery mode.

• In the dictionary, you can expand service interface nodes to examine the AUTOSAR events
created by the default component mapping.

• In the dictionary, you can define a unique namespace for each service interface. Example
model autosar_LaneGuidance defines namespaces company::chassis::provided and
company::chassis::required for the respective service interfaces. When you build the
model, generated C++ code uses the service interface namespaces.

 Configure AUTOSAR Adaptive Software Components

6-45

• In the dictionary, in the XML options view, you can configure characteristics of exported
AUTOSAR XML. To generate compact code, example model autosar_LaneGuidance sets
XML option Exported XML file packaging to Single file. In the Model Configuration
Parameters dialog box, the example model sets Code Placement > File packaging format
to Compact.

8 Build the AUTOSAR adaptive software component model. For example, in the model window,
enter Ctrl+B. Building the model generates:

• C++ files that implement the model algorithms for the AUTOSAR Adaptive Platform and
provide shared data type definitions.

• AUTOSAR XML descriptions of the AUTOSAR adaptive software component and manifest
information for application deployment and service configuration.

• C++ files that implement a main program module.

• AUTOSAR Runtime Adaptive (ARA) environment header files.

6 AUTOSAR Adaptive Software Component Modeling

6-46

• CMakeLists.txt file that supports CMake generation of executables.

The generated C++ model files include model class definitions and AUTOSAR Runtime for Adaptive
Applications (ARA) calls to implement the adaptive software component services. For example, model
file autosar_LaneGuidance.cpp contains initialization code for each service interface and event.
The code reflects the service interface namespaces and event names configured in the AUTOSAR
Dictionary.
// Model initialize function
void autosar_LaneGuidanceModelClass::initialize()
{
 {
 ara::com::ServiceHandleContainer< company::chassis::required::proxy::
 RequiredInterfaceProxy::HandleType > handles;
 handles = company::chassis::required::proxy::RequiredInterfaceProxy::
 FindService(ara::com::InstanceIdentifier("1"));
 if (handles.size() > 0U) {
 RequiredPort = std::make_shared< company::chassis::required::proxy::
 RequiredInterfaceProxy >(*handles.begin());

 // Subscribe event
 RequiredPort->leftLaneDistance.Subscribe(1U);
 RequiredPort->leftTurnIndicator.Subscribe(1U);
 RequiredPort->leftCarInBlindSpot.Subscribe(1U);
 RequiredPort->rightLaneDistance.Subscribe(1U);
 RequiredPort->rightTurnIndicator.Subscribe(1U);
 RequiredPort->rightCarInBlindSpot.Subscribe(1U);
 }

 ProvidedPort = std::make_shared< company::chassis::provided::skeleton::
 ProvidedInterfaceSkeleton >(ara::com::InstanceIdentifier("2"), ara::com::
 MethodCallProcessingMode::kPoll);
 ProvidedPort->OfferService();
 }
}

Model file autosar_LaneGuidance.cpp also contains step code for each service interface event.
For example, the step code for RequiredInterface, event rightCarInBlindSpot, calls a function
to fetch and handle new rightCarInBlindSpot event data received by AUTOSAR Runtime
Adaptive (ARA) environment middleware.
// Model step function
void autosar_LaneGuidanceModelClass::step()
{
...
if (RequiredPort) {
 leftLaneDistanceResultSharedPtr = std::make_shared< ara::core::Result<size_t>
 >(RequiredPort->rightCarInBlindSpot.GetNewSamples(std::move(std::bind
 (&autosar_LaneGuidanceModelClass::
 RequiredPortrightCarInBlindSpotReceive, this, std::placeholders::_1))));
 leftLaneDistanceResultSharedPtr->ValueOrThrow();
 }
...
}

The exported AUTOSAR XML code includes descriptions of AUTOSAR elements that you configured
by using the AUTOSAR Dictionary. For example, component file autosar_LaneGuidance.arxml
describes the namespaces and events specified for required and provided interfaces.

 Configure AUTOSAR Adaptive Software Components

6-47

<SERVICE-INTERFACE UUID="...">
 <SHORT-NAME>RequiredInterface</SHORT-NAME>
 <NAMESPACES>
 <SYMBOL-PROPS>
 <SHORT-NAME>company</SHORT-NAME>
 <SYMBOL>company</SYMBOL>
 </SYMBOL-PROPS>
 <SYMBOL-PROPS>
 <SHORT-NAME>chassis</SHORT-NAME>
 <SYMBOL>chassis</SYMBOL>
 </SYMBOL-PROPS>
 <SYMBOL-PROPS>
 <SHORT-NAME>required</SHORT-NAME>
 <SYMBOL>required</SYMBOL>
 </SYMBOL-PROPS>
 </NAMESPACES>
 <EVENTS>
 ...
 <VARIABLE-DATA-PROTOTYPE UUID="...">
 <SHORT-NAME>rightCarInBlindSpot</SHORT-NAME>
 <CATEGORY>VALUE</CATEGORY>
 <SW-DATA-DEF-PROPS>
 <SW-DATA-DEF-PROPS-VARIANTS>
 <SW-DATA-DEF-PROPS-CONDITIONAL>
 <SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
 <SW-IMPL-POLICY>QUEUED</SW-IMPL-POLICY>
 </SW-DATA-DEF-PROPS-CONDITIONAL>
 </SW-DATA-DEF-PROPS-VARIANTS>
 </SW-DATA-DEF-PROPS>
 <TYPE-TREF DEST="IMPLEMENTATION-DATA-TYPE">
 /LaneGuidance_pkg/LaneGuidance_dt/Double</TYPE-TREF>
 </VARIABLE-DATA-PROTOTYPE>
 </EVENTS>
</SERVICE-INTERFACE>

The generated C++ main program file provides a framework for running adaptive software
component service code. For the autosar_LaneGuidance model, the main.cpp file:

• Instantiates the adaptive software component model object.
• Reports the adaptive application state to ARA.
• Calls the model initialize and terminate functions.
• Sets up asynchronous function call objects for each task.
• Runs asynchronous function calls in response to base-rate tick semaphore posts.

See Also
Event Receive | Event Send

Related Examples
• “Model AUTOSAR Adaptive Software Components” on page 6-2
• “Create and Configure AUTOSAR Adaptive Software Component” on page 6-6
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21
• “Model AUTOSAR Adaptive Service Communication” on page 6-50
• “Configure AUTOSAR Adaptive Code Generation” on page 6-73

6 AUTOSAR Adaptive Software Component Modeling

6-48

More About
• “Comparison of AUTOSAR Classic and Adaptive Platforms” on page 1-5

 Configure AUTOSAR Adaptive Software Components

6-49

Model AUTOSAR Adaptive Service Communication
The AUTOSAR Adaptive Platform defines service-oriented, event-based communication between
adaptive software components. Each adaptive software component provides and consumes services,
and interconnected components send and receive service events. A component contains:

• An algorithm that performs tasks in response to received events.
• Required and provided ports, through which events are received and sent.
• Service interfaces, which provide the framework for event-based communication.

To model adaptive service communication in Simulink, you can:

• Create AUTOSAR required and provided ports, service interfaces, service interface events, and C
++ namespaces.

• Create root-level inports and outports and map them to AUTOSAR required and provided ports
and service interface events.

If you have Simulink Coder and Embedded Coder software, you can generate C++ code and ARXML
descriptions for AUTOSAR service communication.

To implement adaptive service communication in Simulink:

1 Open a model configured for the AUTOSAR Adaptive Platform. Displays in this example use
model autosar_LaneGuidance.

2 Open the AUTOSAR Dictionary and select Service Interfaces. To create an AUTOSAR service

interface, click the Add button . In the Add Interfaces dialog box, specify the interface name
and the number of associated events.

3 Expand the Service Interfaces node. Expand the new service interface and select Events. In
the events view, select each service event and configure its attributes.

6 AUTOSAR Adaptive Software Component Modeling

6-50

4 Select Namespaces. The namespaces view allows you to define a unique namespace for each
service interface. The code generator uses the defined namespace when producing C++ code for
the interface. To modify or construct a namespace specification, select a namespace element and
edit the name value. For example, this namespaces view defines namespace
company::chassis::provided for service interface ProvidedInterface.

5 At the top level of the AUTOSAR Dictionary, expand AdaptiveApplications and expand the
adaptive software component. Use the RequiredPorts and ProvidedPorts views to add
AUTOSAR required and provided ports that you want to associate with the new service interface.
For each new service port, select the service interface you created.

 Model AUTOSAR Adaptive Service Communication

6-51

6 Optionally, you can configure adaptive service instance identification for AUTOSAR ports. In the
RequiredPorts or ProvidedPorts view, select a port and view its Manifest attributes. Based
on the service instance form selected in XML options, examine the value for Instance Specifier
or Instance Identifier. You can enter a value or accept an existing value. For more information,
see “Configure AUTOSAR Adaptive Service Instance Identification” on page 6-64.

7 Optionally, for AUTOSAR required ports, you can configure service discovery, which affects how
adaptive applications find dynamic services. In the RequiredPorts view, select a port and
configure its Service Discovery Mode. Select OneTime or DynamicDiscovery. For more
information, see “Configure AUTOSAR Adaptive Service Discovery Modes” on page 6-62.

8 In the model widow, to model AUTOSAR adaptive service ports, create root-level inports and
outports.

9 Open the Code Mappings editor. Use the Inports and Outports tabs to map Simulink inports
and outports to AUTOSAR required and provided ports. For each inport or outport, select an
AUTOSAR required or provided port and an AUTOSAR service interface event.

10 Optionally, you can configure memory allocation for service data sent from AUTOSAR provided
ports. In the Outports tab, select a port and use the code attribute AllocateMemory to
configure memory allocation. Specify whether to send event data by reference (the default) or by
ara::com allocated memory. To send event data by ara::com allocated memory, select the
value true. To send event data by reference, select false. For more information, see “Configure
Memory Allocation for AUTOSAR Adaptive Service Data” on page 6-60.

11 After validating the adaptive component model configuration, you can simulate or generate code
for AUTOSAR service communication.

To programmatically configure AUTOSAR adaptive service communication, use the AUTOSAR
property and mapping functions. For example, the following MATLAB code adds an AUTOSAR service
interface, event, and required port to an open model. It then maps a Simulink inport to the AUTOSAR
required port.
hModel = 'autosar_LaneGuidance';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);

% Add AUTOSAR service interface mySvcInterface with event mySvcEvent
arProps = autosar.api.getAUTOSARProperties(hModel);
addPackageableElement(arProps,'ServiceInterface',...
 '/LaneGuidance_pkg/LaneGuidance_if','mySvcInterface');
add(arProps,'mySvcInterface','Events','mySvcEvent');

% Add AUTOSAR required port myRPort, associated with mySvcInterface
add(arProps,'LaneGuidance','RequiredPorts','myRPort',...
 'Interface','mySvcInterface');

% Map Simulink inport to AUTOSAR port/event pair myRPort and mySvcEvent
slMap = autosar.api.getSimulinkMapping(hModel);
mapInport(slMap,'rightCarInBlindSpot','myRPort','mySvcEvent');

6 AUTOSAR Adaptive Software Component Modeling

6-52

Model Client-Server Communication
Adaptive AUTOSAR supports client-server communication between application software components.
Methods on an AUTOSAR service interface define the interaction between a software component
modeled as a server that provides an interface implementation and a software component modeled as
a client that requires an interface.

In Simulink, you can model client-server communication with synchronous or asynchronous call
behaviors. Synchronous client models produce blocked client execution, where the client sends
requests to the server and waits for the response. Asynchronous client models produce non-blocking
execution, which consists of clients sending requests, continuing execution after the request is sent,
and processing the response upon method completion.

To model AUTOSAR clients and servers in the Simulink environment for simulation and code
generation:

• Model AUTOSAR servers by using Simulink Function blocks at the root level of a model.
• Model synchronous or asynchronous AUTOSAR clients:

• Model synchronous client calls by using Function Caller blocks.
• Model asynchronous client calls by using Function Caller blocks and “Message Triggered

Subsystem” blocks.

If you import ARXML definitions of clients or servers, AUTOSAR Blockset creates and configures the
components in Simulink, after which you can directly simulate the component models and export
generated C++ code and ARXML. ARXML definitions of clients are imported as synchronous client
calls, which you can reconfigure in Simulink to use asynchronous behavior if needed.

Configure AUTOSAR Adaptive Servers

A server provides services to clients. To model and simulate an AUTOSAR adaptive server in the
Simulink environment, use a Simulink Function block and Function Element block to provide the
service to clients. Optionally, you can generate C++ code and export ARXML definitions.

1 Create or open an export-function model configured for the AUTOSAR Adaptive Platform.
2 Model the AUTOSAR adaptive server. Use Simulink Function blocks and Function Element ports

to model provided services to clients.

3 Open the Simulink Function block, right-click the Trigger Port, and select Block Parameters.
Verify Function visibility is set to port and Scope to port is set to the name of the exporting
function port created by the root-level Function Element.

 Model AUTOSAR Adaptive Service Communication

6-53

If you are modeling asynchronous client-server behavior, select Execute function call
asynchronously.

4 On the Apps tab, click AUTOSAR Component Designer.
5 View the AUTOSAR properties of the service interface.

Open the AUTOSAR Dictionary and view the properties derived from the component model.
Optionally, you can create additional properties:

a Select Service Interfaces to view or create an interface. This interface defines the
properties for the modeled server component.

To create an AUTOSAR service interface, click the add button .
b Under Service Interfaces, view or create the methods. The AUTOSAR adaptive standard

defines request-response methods that expect a response to a method call and fire-forget
methods that do not expect a return value. For the modeled server, you can create and
configure the name and method type.

c At the top level of the AUTOSAR Dictionary, expand AdaptiveApplications and view
ProvidedPorts. The ProvidedPorts define the properties for the ports used in Simulink
Function blocks to respond to clients.

Click a port to view the adaptive service instance identification attributes Instance
Specifier and Instance Identifier. For a deployed server to communicate with deployed
clients, the service instance identification of the provided port of the modeled server must

6 AUTOSAR Adaptive Software Component Modeling

6-54

match the instance identification of the required port of the modeled clients. For more
information, see “Configure AUTOSAR Adaptive Service Instance Identification” on page 6-
64.

6 View how the code properties map to the modeled server. Open the Code Mappings editor, then
open the Functions tab to view server functions.

• The Source column shows the modeled Function Element blocks.
• The Port column shows the ProvidedPort name.
• The Method column shows which method defined in the AUTOSAR Dictionary associates with

each port and block.
7 Validate and simulate the server model.
8 Optionally build the component model to generate C++ code and export ARXML definitions.

Configure Synchronous AUTOSAR Adaptive Clients (Blocking)

Configure an AUTOSAR adaptive client that requires a service from a server. The client in this
example models synchronous communication, resulting in blocked execution after sending the
request to the server.

To model a synchronous AUTOSAR adaptive client in the Simulink environment, use a Simulink
Function Caller block and configure a service interface to call the server. Optionally, you can generate
C++ code and export ARXML definitions.

1 Create or open an export-function model configured for the AUTOSAR Adaptive Platform.
2 Model the synchronous AUTOSAR adaptive client. To model the client in the Simulink, use

Function Caller blocks and Function Element Call blocks to call the service provided by the
server.

3 Continue to “Validate, Simulate, and Optionally Generate Code for Adaptive Clients” on page 6-
58.

Configure Asynchronous AUTOSAR Adaptive Clients (Non-blocking)

Configure an AUTOSAR adaptive client that requires a service from a server. The client in this
example models asynchronous communication, resulting in non-blocking operations with continued
execution after sending the request to the server.

To model an asynchronous AUTOSAR adaptive client in the Simulink environment, use a Simulink
Function Caller block and a Message Triggered subsystem, and configure the service interface to call
the server. Optionally, you can generate C++ code and export ARXML definitions.

To configure an asynchronous adaptive client:

1 Create or open an export-function model configured for the AUTOSAR Adaptive Platform.
2 Add a Function Element Call port to model the asynchronous AUTOSAR adaptive client.

 Model AUTOSAR Adaptive Service Communication

6-55

3 In the function-call subsystem, add a Function Caller block, right-click the Function Caller block,
and select Block Parameters (FunctionCaller). In the Block Parameters dialog box, select
Execute function call asynchronously.

The asynchronous function-call block must have one output. When asynchronous behavior is
selected, the Function Caller block emits a message instead of signal lines. The message signifies
the asynchronous behavior of method execution.

4 At the root level of the model, add a “Message Triggered Subsystem” and connect the message
signal from the Function-Call Subsystem.

6 AUTOSAR Adaptive Software Component Modeling

6-56

When the method called from the Function Caller completes, the output message triggers the
message triggered subsystem, which acts as the callback that the client application registers for
an asynchronous method. The message triggered subsystem executes whenever a message is
available at the control port, independent of sample time.

5 Open the message triggered subsystem, right-click the Trigger Port block, and select Block
Parameters (TriggerPort).

In the Block Parameters dialog box, verify that Trigger type is set to message, and Schedule as
aperiodic partition is not selected.

6 Add behavior to the message triggered subsystem.
7 Complete the model with any additional logic.
8 Continue to section “Validate, Simulate, and Optionally Generate Code for Adaptive Clients” on

page 6-58.

 Model AUTOSAR Adaptive Service Communication

6-57

Validate, Simulate, and Optionally Generate Code for Adaptive Clients

To validate and simulate an AUTOSAR adaptive client in the Simulink environment, review the service
interface by using the AUTOSAR Dictionary and code property mappings by using the Code Mapping
editor. Optionally, you can generate C++ code and export ARXML definitions.

1 On the Apps tab, click AUTOSAR Component Designer.
2 View the AUTOSAR properties of the service interface. Open the AUTOSAR Dictionary and view

the properties derived from the component model. Optionally, you can create additional
properties:

a Select Service Interfaces to view or create an interface. This interface defines the
properties for the modeled client component.

To create an AUTOSAR service interface, click the add button .
b Under Service Interfaces, view or create the methods. For the modeled client, you can

create and configure the name and method type.
c At the top level of the AUTOSAR Dictionary, expand AdaptiveApplications, and view the

RequiredPorts. RequiredPorts define the code properties for the ports used in Simulink
Function Caller blocks that request services from servers.

Click a port to view the adaptive service instance identification manifest attributes Instance
Specifier and Instance Identifier. For a deployed client to communicate with deployed
servers, the service instance identification of the required port of the modeled client must
match the instance identification of the provided port of the modeled server. For more
information, see “Configure AUTOSAR Adaptive Service Instance Identification” on page 6-
64.

3 View how the code properties map to the modeled client. Open the Code Mappings editor, then
open the Function Callers tab to view client functions.

• The Source column shows the modeled Function Caller blocks.
• The Port column shows the RequiredPort name.
• The Method column shows which method defined in the AUTOSAR Dictionary associates with

each port and block.
4 Validate and simulate the client model.
5 (Optional) Build the component model to generate C++ code and export ARXML definitions.

Tips and Limitations

• Global Simulink functions are not supported for Adaptive AUTOSAR.
• Private scoped Simulink functions are not mapped to methods. They can be used to model

behavior internal to the adaptive application component.
• Function Caller blocks configured for asynchronous behavior must have one output. Function

Caller blocks with a void output or multiple outputs are not supported.

See Also
Simulink Function | Function Caller | Function-Call Subsystem | Message Triggered Subsystem |
Function Element | Function Element Call

6 AUTOSAR Adaptive Software Component Modeling

6-58

Related Examples
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37

More About
• “Model AUTOSAR Communication” on page 2-22
• “AUTOSAR Component Configuration” on page 4-3

 Model AUTOSAR Adaptive Service Communication

6-59

Configure Memory Allocation for AUTOSAR Adaptive Service
Data

To send service event data, the AUTOSAR Adaptive Platform supports these methods:

• By reference — The send function uses memory in the application address space. After the send
returns, the application can modify the event data.

• By ara::com allocated memory — The application requests ara::com middleware to allocate
memory for the data. This method avoids data copies by ara::com middleware and can be more
efficient for frequent sends or large amounts of data. But the application loses access to the
memory after the send returns.

To configure memory allocation for event sends, open the Code Mappings editor. Select the Outports
tab and examine each outport. When you select an outport, the editor displays the code attribute
AllocateMemory. To send event data by ara::com allocated memory, select the value true. To
send event data by reference, select false.

If you set AllocateMemory to true, in the generated C++ model code, the corresponding event
send uses an ara::com allocated buffer.
void autosar_LaneGuidanceModelClass::step()
{
...
 ara::com::SampleAllocateePtr<company::chassis::provided::skeleton::events::
 rightHazardIndicator::SampleType> *rightHazardIndicatorAllocateePtrRawPtr;
 std::shared_ptr< ara::com::SampleAllocateePtr<company::chassis::provided::
 skeleton::events::rightHazardIndicator::SampleType> >
 rightHazardIndicatorAllocateePtrSharedPtr;
...
 rightHazardIndicatorAllocateePtrSharedPtr = std::make_shared< ara::com::
 SampleAllocateePtr<company::chassis::provided::skeleton::events::
 rightHazardIndicator::SampleType> >
 (ProvidedPort->rightHazardIndicator.Allocate());
 rightHazardIndicatorAllocateePtrRawPtr =
 rightHazardIndicatorAllocateePtrSharedPtr.get();

 // Send: '<S8>/Message Send'
 *rightHazardIndicatorAllocateePtrRawPtr->get() = rtb_Merge1;

 // Send event
 ProvidedPort->rightHazardIndicator.Send(std::move
 (*rightHazardIndicatorAllocateePtrRawPtr));
}

6 AUTOSAR Adaptive Software Component Modeling

6-60

See Also

Related Examples
• “Model AUTOSAR Adaptive Service Communication” on page 6-50
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37

More About
• “AUTOSAR Component Configuration” on page 4-3

 Configure Memory Allocation for AUTOSAR Adaptive Service Data

6-61

Configure AUTOSAR Adaptive Service Discovery Modes
AUTOSAR adaptive service communication provides the option to configure applications to use one-
time or dynamic discovery to subscribe to services. The default discovery mode, OneTime, allows an
AUTOSAR application to find and subscribe to services at initialization. This mode of discovery may
require that services are started before the application. You can change the service discovery mode to
DynamicDiscovery to enable an AUTOSAR application to find and subscribe to services as they
become available.

You can configure, in your model or programmatically, the service discovery mode of each required
service port as OneTime or DynamicDiscovery:

• From your model, you can use the AUTOSAR Dictionary to open the Service discovery attributes
of required ports and select their service discovery modes.

This example shows how to set a required port to DynamicDiscovery.

• Programmatically, you can use the set function from the getAUTOSARProperties API to configure
the service discovery mode.

This example shows how to set a required port to DynamicDiscovery.
hModel = 'autosar_LaneGuidance';
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
open_system(hModel);
apiObj = autosar.api.getAUTOSARProperties(hModel);
set(apiObj,"/LaneGuidance_pkg/LaneGuidance_swc/LaneGuidance/RequiredPort/", ...
"ServiceDiscoveryMode", "DynamicDiscovery")

The service discovery mode value impacts the generated C++ code (in the model source code file) in
the following two locations:

• The call site of the StartFindService API and registration of the callback (for both the
InstanceIdentifier and InstanceSpecifier variants).
// Model initialize function
void autosar_LaneGuidanceModelClass::initialize()
{
 ProvidedPort = std::make_shared< company::chassis::provided::skeleton::

6 AUTOSAR Adaptive Software Component Modeling

6-62

 ProvidedInterfaceSkeleton >(ara::com::InstanceIdentifier("2"), ara::com::
 MethodCallProcessingMode::kPoll);
 ProvidedPort->OfferService();
 company::chassis::required::proxy::RequiredInterfaceProxy::StartFindService
 (std::move(std::bind(&autosar_LaneGuidanceModelClass::RequiredPortSvcHandler,
 this, std::placeholders::_1, std::placeholders::_2)), ara::com::
 InstanceIdentifier("1"));
}

• The definition of the callback function.
void autosar_LaneGuidanceModelClass::RequiredPortSvcHandler(ara::com::
 ServiceHandleContainer< company::chassis::required::proxy::
 RequiredInterfaceProxy::HandleType > svcHandles, const ara::com::
 FindServiceHandle fsHandle)
{
 if ((!RequiredPort) && (svcHandles.size() > 0U)) {
 RequiredPort = std::make_shared< company::chassis::required::proxy::
 RequiredInterfaceProxy >(*svcHandles.begin());
 RequiredPort->leftCarInBlindSpot.Subscribe(1U);
 RequiredPort->leftLaneDistance.Subscribe(1U);
 RequiredPort->leftTurnIndicator.Subscribe(1U);
 RequiredPort->rightCarInBlindSpot.Subscribe(1U);
 RequiredPort->rightLaneDistance.Subscribe(1U);
 RequiredPort->rightTurnIndicator.Subscribe(1U);
 company::chassis::required::proxy::RequiredInterfaceProxy::StopFindService
 (fsHandle);
 }
}

See Also

Related Examples
• “Model AUTOSAR Adaptive Service Communication” on page 6-50
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21

More About
• “AUTOSAR Component Configuration” on page 4-3

 Configure AUTOSAR Adaptive Service Discovery Modes

6-63

Configure AUTOSAR Adaptive Service Instance Identification
You can configure service instance identification for required and provided ports in an AUTOSAR
adaptive component. When you build an adaptive software component model:

• Exported ARXML files include a service instance manifest file, which describes port-to-service
instance mapping.

• Generated C++ code uses the configured service instance information in ara::com function calls.

To configure service instance identification:

1 Open the AUTOSAR Dictionary and select XML Options. Set XML option Identify Service
Instance Using to indicate the form in which to generate service instance information. Select
InstanceIdentifier or InstanceSpecifier. The form that you select is used to identify
service instances in generated Proxy and Skeleton functions.

2 Go to the required ports and provided ports views in the dictionary. Select each listed port to
display its Manifest attributes. For each port, based on the service instance form you selected
in XML options, examine the value for Instance Specifier or Instance Identifier.You can enter
a value or accept an existing value.

Building the model generates the service instance manifest file
model_ServiceInstanceManifest.arxml. The manifest file describes service interface
deployments, service instance to port mapping, and service interfaces for the adaptive component.

In the generated C++ code, ara::com function calls use the configured service instance information.
For example, if you selected the InstanceIdentifier form, and set Instance Identifier to 1 for a
required port, the generated function calls use that configuration.
// Model initialize function
void autosar_LaneGuidanceModelClass::initialize()
{
 {
 ara::com::ServiceHandleContainer< company::chassis::required::proxy::
 RequiredInterfaceProxy::HandleType > handles;
 handles = company::chassis::required::proxy::RequiredInterfaceProxy::
 FindService(ara::com::InstanceIdentifier("1"));
...

6 AUTOSAR Adaptive Software Component Modeling

6-64

See Also

Related Examples
• “Model AUTOSAR Adaptive Service Communication” on page 6-50
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21

More About
• “AUTOSAR Component Configuration” on page 4-3

 Configure AUTOSAR Adaptive Service Instance Identification

6-65

Model AUTOSAR Adaptive Persistent Memory
To model adaptive persistent memory in Simulink, you can:

• Create AUTOSAR persistency provided-required ports, persistency key value interfaces, and key
value interface data elements.

• Create data stores and map them to AUTOSAR persistency ports and data elements.

If you have Simulink Coder and Embedded Coder software, you can generate C++ code and ARXML
descriptions for AUTOSAR persistent memory artifacts.

To implement adaptive persistent memory in Simulink:

1 Open a model configured for the AUTOSAR Adaptive Platform.
2 Open the AUTOSAR Dictionary and select Persistency Key Value Interfaces. To create an

AUTOSAR persistency key value interface, click the Add button . In the Add Interfaces dialog
box, specify the interface name and the number of associated data elements.

3 Expand the Persistency Key Value Interfaces node. Expand the new key value interface and
select DataElements. In the data elements view, select each data element and configure its
name.

4 At the top level of the AUTOSAR Dictionary, expand AdaptiveApplications and expand the
adaptive software component. Use the PersistencyProvidedRequiredPorts view to add
AUTOSAR persistency provided-required ports that you want to associate with the new
persistency key value interface.

5 In the model widow, to model AUTOSAR adaptive persistency, add data store memory blocks.
6 Open the Code Mappings editor. Use the Data Stores tab to map Simulink data store memory

blocks to Persistency.
7 For each data store memory, select an AUTOSAR persistency provided-required port and an

AUTOSAR persistency key value interface data element.

6 AUTOSAR Adaptive Software Component Modeling

6-66

8 To programmatically map a data store and select port and data element for the data store, you
can use the mapDataStore function.

9 After validating the adaptive component model configuration, you can simulate or generate code
for AUTOSAR adaptive persistent memory.

See Also
mapDataStore | getDataStore

Related Examples
• “Map AUTOSAR Adaptive Elements for Code Generation” on page 6-37
• “Configure AUTOSAR Adaptive Elements and Properties” on page 6-21

 Model AUTOSAR Adaptive Persistent Memory

6-67

Generate AUTOSAR Adaptive C++ Code and XML Descriptions

Generate AUTOSAR-compliant C++ code and export AUTOSAR XML (ARXML) descriptions from
AUTOSAR adaptive component model.

If you have Simulink Coder and Embedded Coder software, you can build AUTOSAR component
models. Building an adaptive component model generates algorithmic C++ code and exports ARXML
descriptions that comply with AUTOSAR Adaptive Platform specifications. Use the generated C++
code and ARXML descriptions for testing in Simulink or integration into an AUTOSAR adaptive run-
time environment.

Prepare AUTOSAR Adaptive Component Model for Code Generation

Open an adaptive component model from which you want to generate AUTOSAR C++ code and
ARXML descriptions. This example uses AUTOSAR example model autosar_LaneGuidance.

open_system('autosar_LaneGuidance');

Optionally, to refine model configuration settings for code generation, you can use the Embedded
Coder Quick Start (recommended). This example uses the Embedded Coder Quick Start. From the
Apps tab, open the AUTOSAR Component Designer app. On the AUTOSAR tab, click Quick Start.

Work through the quick-start procedure. In the Output window, select output option C++ code
compliant with AUTOSAR Adaptive Platform.

6 AUTOSAR Adaptive Software Component Modeling

6-68

The quick-start software takes the following steps to configure an AUTOSAR adaptive software
component model:

1 Configures code generation settings for the model. If the AUTOSAR target is not selected, the
software sets model configuration parameter System target file to autosar_adaptive.tlc.

2 If no AUTOSAR mapping exists, the software creates a mapped AUTOSAR adaptive software
component for the model.

3 Performs a model build.

In the last window, when you click Finish, your model opens in the AUTOSAR code perspective.

 Generate AUTOSAR Adaptive C++ Code and XML Descriptions

6-69

Inspect XML Options in AUTOSAR Dictionary

Before generating code, open the AUTOSAR Dictionary and examine the settings of AUTOSAR XML
export parameters. On the AUTOSAR tab, select Code Interface > AUTOSAR Dictionary. In the
AUTOSAR Dictionary, select XML Options.

The XML options view in the AUTOSAR Dictionary displays XML export parameters and their values.
You can configure:

• XML file packaging for AUTOSAR elements created in Simulink
• AUTOSAR package paths
• Aspects of exported AUTOSAR XML content

This example sets Exported XML file packaging to Single file, so that ARXML for adaptive
components, data types, and interfaces is exported into a single file, modelname.arxml. Export also
generates ARXML manifest files.

6 AUTOSAR Adaptive Software Component Modeling

6-70

Generate AUTOSAR C++ Code and XML Descriptions

To generate AUTOSAR C++ code and XML software descriptions that comply with Adaptive Platform
specifications, build the model. In the model window, press Ctrl+B. The build process generates C++
code and ARXML descriptions to the model build folder,
autosar_LaneGuidance_autosar_adaptive. Data types and related elements that are not used
in the model are removed from the exported ARXML files. When the build completes, a code
generation report opens.

 Generate AUTOSAR Adaptive C++ Code and XML Descriptions

6-71

Related Links

• “Code Generation”
• “AUTOSAR Component Configuration” on page 4-3
• “AUTOSAR Blockset”

6 AUTOSAR Adaptive Software Component Modeling

6-72

Configure AUTOSAR Adaptive Code Generation
To generate AUTOSAR-compliant C++ code and ARXML component descriptions from a model
configured for the AUTOSAR Adaptive platform:

1 In the Configuration Parameters dialog box, on the Code Generation > AUTOSAR Code
Generation Options pane, configure AUTOSAR code generation parameters.

2 Configure AUTOSAR XML export options by using the AUTOSAR Dictionary or AUTOSAR
property functions.

3 Optionally, customize the generated C++ class name and namespace for the adaptive model.
4 Optionally, modify the run-time logging behavior for the adaptive application.
5 Build the model.

Note CMake version 3.12 or above is required for AUTOSAR adaptive code generation.

In this section...
“Select AUTOSAR Adaptive Schema” on page 6-73
“Specify Maximum SHORT-NAME Length” on page 6-74
“Specify XCP Slave Transport Layer” on page 6-74
“Specify XCP Slave IP Address” on page 6-74
“Specify XCP Slave Port” on page 6-75
“Enable XCP Slave Message Verbosity” on page 6-75
“Use Custom XCP Slave” on page 6-75
“Inspect AUTOSAR Adaptive XML Options” on page 6-76
“Customize Class Name and Namespace in Generated Code” on page 6-76
“Configure Run-Time Logging Behavior” on page 6-76
“Generate AUTOSAR Adaptive C++ and XML Files” on page 6-77

Select AUTOSAR Adaptive Schema
For import and export of ARXML files and generation of AUTOSAR-compliant C++ code, AUTOSAR
Blockset supports the following AUTOSAR Adaptive Platform schema versions:

• R20-11 (00049)
• R19-11 (00048)
• R19-03 (00047)
• R18-10 (00046)

Selecting the AUTOSAR adaptive system target file for your model for the first time sets the schema
version parameter to the default value R20-11 (00049).

If you import ARXML files into Simulink, the ARXML importer detects and uses the schema version. It
sets the schema version parameter in the model. For example, if you import ARXML files based on
schema R20-11 (00049), the importer sets the matching schema version in the model.

 Configure AUTOSAR Adaptive Code Generation

6-73

When you build an AUTOSAR adaptive model, the code generator exports ARXML descriptions and
generates C++ code that are compliant with the current AUTOSAR schema version value.

Before exporting your AUTOSAR software component, check the selected schema version. If you need
to change the selected schema version, use the model configuration parameter Generate XML file
for schema version.

Note Set the AUTOSAR model configuration parameters to the same values for top and referenced
models. This guideline applies to Generate XML file for schema version, Maximum SHORT-
NAME length, Transport layer, IP address, Port, Verbose, and Use custom XCP Slave.

Specify Maximum SHORT-NAME Length
The AUTOSAR standard specifies that the maximum length of SHORT-NAME XML elements is 128
characters.

To specify a maximum length for SHORT-NAME elements exported by the code generator, set the
model configuration parameter Maximum SHORT-NAME length to an integer value between 32
and 128, inclusive. The default is 128 characters.

Specify XCP Slave Transport Layer
XCP is a network protocol originating from ASAM for connecting calibration systems to electronic
control units. It enables read and write access to variables and memory contents of micro controller
systems at runtime. As a two-layer protocol, XCP separates the protocol and transport layers and
adheres to a Single-Master/Multi-Slave concept. Transport layer selection does not affect the XCP
protocol layer.

Currently, the following transport layers are defined as standard by ASAM:

• XCP on CAN
• XCP on Sxl
• XCP on Ethernet (TCP/IP or UDP/IP)
• XCP on USB
• XCP on Flex Ray

To select the transport layer used by the AUTOSAR adaptive application (XCP Slave), use the model
configuration parameter Transport layer. Selecting an XCP transport layer enables other XCP
parameters.

For more information, see “Configure AUTOSAR Adaptive Data for Run-Time Calibration and
Measurement” on page 6-80.

Specify XCP Slave IP Address
Internet Protocol (IP) is the principal communications protocol for relaying datagrams across network
boundaries. The Internet Protocol is responsible for addressing host interfaces, encapsulating data
into datagrams, and routing datagrams from a source host interface to a destination host interfaces
across one or more IP networks.

6 AUTOSAR Adaptive Software Component Modeling

6-74

Each datagram has two components: a header and a payload. The IP header includes source IP
address, destination IP address, and other metadata needed to route and deliver the datagram. The
payload is the data that it transported.

To specify the IP address of the machine on which the AUTOSAR adaptive application (XCP Slave)
executes, use the model configuration parameter IP address. The IP address parameter is enabled
by selecting a value for Transport layer.

For more information, see “Configure AUTOSAR Adaptive Data for Run-Time Calibration and
Measurement” on page 6-80.

Specify XCP Slave Port
A port number is the logical address of each application or process that uses a network or the
Internet to communicate. Port number primarily aids in the transmission of data between a network
and an application. Port numbers work in collaboration with networking protocols to achieve this.

A port number uniquely identifies a network-based application on a computer. Each application is
allocated a 16-bit integer port number. This number is assigned by the operating system, set manually
by the user, or set as a default.

To specify the network port on which the AUTOSAR adaptive application (XCP Slave) serves XCP
Master commands, use the model configuration parameter Port. The Port parameter is enabled by
selecting a value for Transport layer.

For more information, see “Configure AUTOSAR Adaptive Data for Run-Time Calibration and
Measurement” on page 6-80.

Enable XCP Slave Message Verbosity
Verbosity is the level of technical detail included in software messages. Verbose messages can help in
debugging and understanding XCP communication.

To enable verbose messages for the AUTOSAR adaptive application (XCP Slave), select the model
configuration parameter Verbose. The Verbose parameter is enabled by selecting a value for
Transport layer.

For more information, see “Configure AUTOSAR Adaptive Data for Run-Time Calibration and
Measurement” on page 6-80.

Use Custom XCP Slave
By default, the MathWorks XCP Slave is used for communication. You can use a custom XCP Slave for
the Ethernet (TCP/IP) transport layer. A custom XCP Slave implementation is required to establish the
interface. Define the implementation in header file xcp_slave.h in folder matlabroot/toolbox/
coder/autosar/adaptive.

To enable use of a custom XCP Slave, select the model configuration parameter Use custom XCP
Slave. The Use custom XCP Slave parameter is enabled by selecting a value for Transport layer.

For more information, see “Configure AUTOSAR Adaptive Data for Run-Time Calibration and
Measurement” on page 6-80.

 Configure AUTOSAR Adaptive Code Generation

6-75

Inspect AUTOSAR Adaptive XML Options
Examine the XML options that you configured by using the AUTOSAR Dictionary. If you have not yet
configured the options, see “Configure AUTOSAR Adaptive XML Options” on page 6-33.

Customize Class Name and Namespace in Generated Code
If you would like to customize the generated code, you can control the generated C++ class name
and namespace for your AUTOSAR applications either interactively or programmatically.

To interactively configure these aspects of the generated code, from an open model, on the
AUTOSAR tab, click Code Interface, select Class Name & Namespace, and customize the names
in the opened configuration dialog box.

To programmatically configure the name and namespace, use the AUTOSAR functions
getClassName, setClassName, getClassNamespace, and setClassNamespace.

Configure Run-Time Logging Behavior
Optionally, modify the ara::log based run-time logging behavior for the AUTOSAR adaptive
application.

As defined in the AUTOSAR Specification of Diagnostic Log and Trace, adaptive
applications can forward event logging information to a console, file, or network. This allows you to
collate and analyze log data from multiple applications. By default, the application logs event
messages to the local console.

6 AUTOSAR Adaptive Software Component Modeling

6-76

To modify the default run-time logging behavior for an adaptive model, you use AUTOSAR property
functions, including set. Code generation exports the specified logging properties to an ARXML
execution manifest file. If you build a Linux® executable from the adaptive model, you can generate a
JSON execution manifest file that modifies the default logging behavior for the executable. For more
information, see “Configure Run-Time Logging for AUTOSAR Adaptive Executables” on page 6-88.

Generate AUTOSAR Adaptive C++ and XML Files

After configuring AUTOSAR code generation and XML options, generate code. To generate C++ code
and export XML descriptions, build the adaptive component model.

The build process generates AUTOSAR-compliant C++ code and AUTOSAR XML descriptions to the
model build folder. The exported XML files include:

• One or more modelname*.arxml files, based on whether you set Exported XML file packaging
to Single file or Modular.

• Manifests for AUTOSAR executables and service instances.
• If you imported ARXML files into Simulink, updated versions of those files.

This table lists modelname*.arxml files that are generated based on the value of the Exported
XML file packaging option configured in the AUTOSAR Dictionary.

Exported XML
File Packaging
Value

Exported File Name Default Contents

Single file modelname.arxml AUTOSAR elements for adaptive software
components, data types, and interfaces.

modelname_ExecutionManifest.ar
xml

Deployment-related information for adaptive
applications, including executables, process-to-
machine mapping sets, and processes.

modelname_ServiceInstanceManif
est.arxml

Configuration of service-oriented communication,
including service interface deployments, service
instances, and service instance to port mappings.

Modular modelname_component.arxml Adaptive software components, including required
and provided ports.

This is the main ARXML file exported for the
Simulink model. In addition to software components,
the component file contains packageable elements
that the exporter does not move to data type or
interface files based on AUTOSAR element category.

 Configure AUTOSAR Adaptive Code Generation

6-77

Exported XML
File Packaging
Value

Exported File Name Default Contents

modelname_datatype.arxml Data types and related elements, including:

• Application data types
• Standard Cpp implementation data types
• Constant specifications
• Physical data constraints
• Units and unit groups
• Software record layouts

modelname_interface.arxml Adaptive interfaces, including required and provided
service interfaces with namespaces and events.

modelname_ExecutionManifest.ar
xml

Deployment-related information for adaptive
applications, including executables, process-to-
machine mapping sets, and processes.

modelname_ServiceInstanceManif
est.arxml

Configuration of service-oriented communication,
including service interface deployments, service
instances, and service instance to port mappings.

You can merge the AUTOSAR adaptive XML component descriptions into an AUTOSAR authoring
tool. The AUTOSAR component information is partitioned into separate files to facilitate merging. The
partitioning attempts to minimize the number of merges that you must do. You do not need to merge
the data type file into the authoring tool because data types are defined early in the design process.
You must merge the internal behavior file because this information is part of the model
implementation.

To help support the round trip of AUTOSAR elements between an AUTOSAR authoring tool (AAT) and
the Simulink Model-Based Design environment, the code generator preserves AUTOSAR elements
and their universal unique identifiers (UUIDs) across ARXML import and export. For more
information, see “Round-Trip Preservation of AUTOSAR XML File Structure and Element
Information” on page 3-37.

For an example of how to generate AUTOSAR-compliant C++ code and export AUTOSAR XML
component descriptions from a Simulink model, see “Generate AUTOSAR Adaptive C++ Code and
XML Descriptions” on page 6-68.

See Also
autosar.api.getSimulinkMapping | getClassName | setClassName | getClassNamespace |
setClassNamespace | Generate XML file for schema version | Maximum SHORT-NAME
length | Transport layer | IP address | Port | Verbose | Use custom XCP Slave

Related Examples
• “Configure AUTOSAR Adaptive XML Options” on page 6-33
• “Configure Run-Time Logging for AUTOSAR Adaptive Executables” on page 6-88
• “Generate AUTOSAR Adaptive C++ Code and XML Descriptions” on page 6-68

6 AUTOSAR Adaptive Software Component Modeling

6-78

More About
• “Round-Trip Preservation of AUTOSAR XML File Structure and Element Information” on page 3-

37

 Configure AUTOSAR Adaptive Code Generation

6-79

Configure AUTOSAR Adaptive Data for Run-Time Calibration
and Measurement

AUTOSAR Blockset enables you to configure run-time calibration of adaptive application data based
on XCP slave communication and ASAP2 (A2L) file generation. The XCP and ASAP2 capabilities are
defined outside the Adaptive Platform (AP) specification, which as of Release 19-11 does not address
data calibration.

As part of generating and deploying adaptive code, you can configure interfaces for XCP slave
communication in the generated C++ code and export A2L files containing model data for calibration
and measurement.

Before deploying adaptive code:

• In the Configuration Parameters dialog box, configure the model to generate XCP slave function
calls in adaptive C++ code and to generate an XCP section in an ASAP2 (A2L) file.

• In the Share gallery under the AUTOSAR tab of the model, use Generate Calibration Files to
generate ASAP2 (A2L) files that contain model data for calibration and measurement.

Configure XCP Communication Interface in Generated Code
To enable the communication capability, use the AUTOSAR adaptive model configuration parameter
Transport layer to select an XCP transport layer. When Transport layer is set to a value other than
None, Simulink adds XCP slave function calls to the generated C++ code. By default, the tool uses
the MathWorks XCP Slave stack.

Selecting an XCP transport layer enables other XCP parameters. This image shows the XCP slave
model configuration parameters.

Using the model configuration parameters, you can:

• Specify the transport layer that you want to use for communication.
• Specify the target machine IP address and port number. You can use the port for only one

application.
• Optionally, enable verbose messages for XCP slave.
• Optionally, instead of the MathWorks XCP slave, you can use a custom XCP slave implementation

based on the Ethernet transport layer. To use a custom XCP slave, provide implementations for the
functions declared in the XCP slave header file by using the custom XCP slave API commands. The
XCP slave header file is located in the MATLAB installation folder matlabroot/toolbox/
coder/autosar/adaptive_deployment/include.

6 AUTOSAR Adaptive Software Component Modeling

6-80

• Add custom XCP slave details in the configuration parameter Toolchain details or add the details
manually to the CMakeLists.txt file.

To generate ASAP2 (A2L) files, use Generate Calibration Files from the Share gallery under the
AUTOSAR tab of the model. For more information, see “Generate ASAP2 and CDF Calibration Files”
(Simulink Coder).

See Also
coder.asap2.export | Transport layer

 Configure AUTOSAR Adaptive Data for Run-Time Calibration and Measurement

6-81

Build Library or Executable from AUTOSAR Adaptive Model
As part of generating code for an AUTOSAR adaptive model, you can generate a CMakeLists.txt
file for building a static or shared library or an executable. The AUTOSAR Adaptive | CMake
toolchain generates the CMakeLists.txt file following modular CMake patterns. You can link the
resulting library against a main.cpp file or combine it with other model files in an integration
environment.

Building the library file from CMakeLists.txt requires running CMake software.

To build a static or shared library:

1 Open a component model that is configured for the AUTOSAR adaptive target
(autosar_adaptive.tlc).

2 Open the Configuration Parameters dialog box and select Code Generation. Under
Toolchain settings:

a Set Toolchain to AUTOSAR Adaptive | CMake.
b Set Build configuration to Specify.
c Set CMake Target Type to Static (for a static library) or Shared (for a shared library).
d In the Include Directories, Link Libraries, and Library Paths fields, specify libraries and

header files that must be generated in CMakeLists.txt to support compilation. For
example, set Include Directories to the string ${START_DIR}/
modelName_autosar_adaptive/stub/aragen, where modelName is the name of the
adaptive model.

e Click OK.

6 AUTOSAR Adaptive Software Component Modeling

6-82

3 Build the model. The build generates C++ code, ARXML files, and a CMakeLists.txt file.
4 In the model build folder, open CMakeLists.txt and verify that it is configured for static or

shared library generation. For example, check that:

a The CMakeLists.txt file contains

add_library(modelName SHARED...) % for shared library

or

add_library(modelName STATIC...) % for static library
b The specifications for target_include_directories, target_link_libraries, and

link_directories include the values specified in Toolchain settings.
5 Go to the model build folder outside MATLAB. To build the static or shared library file, enter

these commands:

 Build Library or Executable from AUTOSAR Adaptive Model

6-83

cmake CMakeLists.txt;
make all;

The make generates a library file for the adaptive model (for example, modelName.a or
modelName.so) in the model build folder. You can link the library against a main.cpp file or
combine it with other model files in an integration environment.

To build an executable, do one of the following:

• Use AUTOSAR Adaptive | CMake toolchain. Follow the same procedure as for libraries, but set
CMake Target Type to Executable.

• To generate a standalone executable, use the AUTOSAR Adaptive Linux Executable
toolchain. For more information, see “Build Out of the Box Linux Executable from AUTOSAR
Adaptive Model” on page 6-85.

See Also

More About
• “Build Out of the Box Linux Executable from AUTOSAR Adaptive Model” on page 6-85
• “Configure AUTOSAR Adaptive Data for Run-Time Calibration and Measurement” on page 6-80

6 AUTOSAR Adaptive Software Component Modeling

6-84

Build Out of the Box Linux Executable from AUTOSAR Adaptive
Model

As part of generating code for an AUTOSAR adaptive model, you can generate a CMakeLists.txt
file for building a Linux standalone executable. Then, on a Linux system, you can build the executable
and run the resulting executable on Linux as a standalone application.

If the applications have matching DDS deployment artifacts, they can communicate with each other.
Building the executable files from CMakeLists.txt requires running CMake software on a Linux
system.

Note Executable generation from an AUTOSAR adaptive model is supported only on the Linux
platform.

To build a Linux standalone executable:

1 Open a component model that you have configured for the AUTOSAR adaptive target
(autosar_adaptive.tlc).

2 In the Configuration Parameters dialog box, select Code Generation > Build process >
Toolchain settings. Set Toolchain to AUTOSAR Adaptive Linux Executable. The toolchain
selection adds ARA functional cluster libraries provided by MathWorks.

 Build Out of the Box Linux Executable from AUTOSAR Adaptive Model

6-85

Note The AUTOSAR Adaptive Linux Executable toolchain is supported only if the
Embedded Coder Support Package for Linux Applications is installed. For more information, see
“Support Package Installation” (Embedded Coder).

3 Build the model. The build generates C++ code, ARXML files, and a CMakeLists.txt file.
4 In the model build folder, open CMakeLists.txt and verify that it is configured for executable

generation. For example, make sure that:

a The CMakeLists.txt file contains add_executable(modelName …).
b The specifications for target_include_directories, target_link_libraries, and

link_directories include the values specified in Toolchain settings.
5 Verify the DDS deployment artifacts DDS Topic Name and DDS Domain ID from the generated

ServiceInstanceManifest.arxml file.

Clear and re-create the mapping for the model with existing mappings (models created by using
a MATLAB version prior to 22a), to have DDS binding as default. Otherwise, the model continues
using user-defined bindings. To re-create the mapping, use this command:

6 AUTOSAR Adaptive Software Component Modeling

6-86

autosar.api.create(<modelName>,'default');
6 Get the support package root directory path using the below command in MATLAB:

path = matlabshared.supportpkg.getSupportPackageRoot

Copy the path to use it in the next step.
7 On a Linux system, outside MATLAB, go to the model build folder. To build the executable file,

enter these commands:
cmake -DSPKG_ROOT=<path from step 6> CMakeLists.txt;
make all;

The make generates an executable file for the adaptive model one level above the model build folder.
You can run the executable on Linux as a standalone application.

Adaptive applications having event deployment artifacts with the same TOPIC-NAME and DOMAIN-ID
can communicate with each other.

See Also

More About
• “Configure AUTOSAR Adaptive Code Generation” on page 6-73
• “Configure AUTOSAR Adaptive Data for Run-Time Calibration and Measurement” on page 6-80

 Build Out of the Box Linux Executable from AUTOSAR Adaptive Model

6-87

Configure Run-Time Logging for AUTOSAR Adaptive
Executables

As defined in the AUTOSAR Specification of Diagnostic Log and Trace, adaptive
applications can forward event logging information to a console, a file, or network. This allows you to
collate and analyze log data from multiple applications. By default, the application logs event
messages to the local console. To view the log data from a file or network, you can use third-party
tools.

To modify the default run-time logging behavior for an adaptive model, use AUTOSAR property
functions, including set. Code generation exports the specified logging properties to an ARXML
execution manifest file. The manifest file is used to configure aspects of the run-time behavior of the
adaptive application Linux executable, such as the logging mode and verbosity level.

If you build a Linux executable from the adaptive model, you can use the AUTOSAR property function
createManifest to generate a JSON execution manifest file. The JSON file modifies the default
logging behavior for the executable. You can generate the JSON execution manifest file after you
build the Linux executable. Before you run the Linux executable, verify that the JSON execution
manifest file and executable file are in the same folder.

In this section...
“Logging to Console” on page 6-88
“Logging to File” on page 6-89
“Logging to Network” on page 6-89

Logging to Console
1 Open the AUTOSAR adaptive model.
2 Use AUTOSAR property functions to set the AUTOSAR property LogMode to Console:

apiObj = autosar.api.getAUTOSARProperties(modelName);
processPath = find(apiObj,'/','Process','PathType','FullyQualified');
set(apiObj,processPath{1},'LogTraceLogMode','Console');

3 Optionally, set the logging verbosity level to Verbose.

set(apiObj,processPath{1},'LogTraceDefaultLogLevel','Verbose');

4 Generate code and ARXML files for the model. The build generates the logging properties into
the file modelname_ExecutionManifest.arxml.

5 If you intend to build and run a Linux standalone executable for the adaptive model, use the
createManifest function to generate the manifest file ExecutionManifest.json in the
current working folder.

createManifest(apiObj);

6 Before you run the Linux executable, verify that the JSON execution manifest file and executable
file are in the same folder.

7 Execute the application and see the log messages appear on the console.

6 AUTOSAR Adaptive Software Component Modeling

6-88

Logging to File
1 Open the AUTOSAR adaptive model.
2 Use AUTOSAR property functions to set the AUTOSAR property LogMode to File:

apiObj = autosar.api.getAUTOSARProperties(modelName);
processPath = find(apiObj,'/','Process','PathType','FullyQualified');
set(apiObj,processPath{1},'LogTraceLogMode','File');

3 Optionally, specify the path to the log file. By default the log file will be saved in the executable
folder.

set(apiObj,processPath{1},'LogTraceFilePath','customFilePath');

4 Optionally, set the logging verbosity level to Verbose.

set(apiObj,processPath{1},'LogTraceDefaultLogLevel','Verbose');

5 Generate code and ARXML files for the model. The build generates the logging properties into
the file modelname_ExecutionManifest.arxml.

6 If you intend to build and run a Linux standalone executable for the adaptive model, use the
createManifest function to generate the manifest file ExecutionManifest.json in the
current working folder.

createManifest(apiObj);

7 Before you run the Linux executable, verify that the JSON execution manifest file and executable
file are in the same folder.

8 Execute the application and verify that the log file is created at the specified or default location.

Logging to Network
1 Open the AUTOSAR adaptive model.
2 Use AUTOSAR property functions to set the AUTOSAR property LogMode to Network:

apiObj = autosar.api.getAUTOSARProperties(modelName);
processPath = find(apiObj,'/','Process','PathType','FullyQualified');
set(apiObj,processPath{1},'LogTraceLogMode','Network');

3 Optionally, set the logging verbosity level to Verbose.

set(apiObj,processPath{1},'LogTraceDefaultLogLevel','Verbose');

4 Generate code and ARXML files for the model. The build generates the logging properties into
the file modelname_ExecutionManifest.arxml.

5 Before you run the Linux executable, verify that the JSON execution manifest file and executable
file are in the same folder.

6 Initialize the AUTOSAR run-time environment for adaptive applications with following command.

autosar.ara.initialize

7 Execute the application and see the log messages appear on the network.

See Also
createManifest

 Configure Run-Time Logging for AUTOSAR Adaptive Executables

6-89

AUTOSAR Composition and ECU
Software Simulation

• “Import AUTOSAR Composition to Simulink” on page 7-2
• “Combine and Simulate AUTOSAR Software Components” on page 7-7
• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page 7-14
• “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18
• “Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36
• “Configure and Simulate AUTOSAR Function Inhibition Service Calls” on page 7-49
• “Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection”

on page 7-53

7

Import AUTOSAR Composition to Simulink

Create Simulink® model from XML description of AUTOSAR software composition.

Import AUTOSAR Composition from ARXML File to Simulink

Here is an AUTOSAR software composition that implements a throttle position control system. The
composition contains six interconnected AUTOSAR software component prototypes -- four sensor/
actuator components and two application components.

The composition was created in an AUTOSAR authoring tool and exported to the file
ThrottlePositionControlComposition.arxml.

Use the MATLAB function createCompositionAsModel to import the AUTOSAR XML (ARXML)
description and create an initial Simulink representation of the AUTOSAR composition. First, parse
the ARXML description file and list the compositions it contains.

ar = arxml.importer('ThrottlePositionControlComposition.arxml');
names = getComponentNames(ar,'Composition')

names = 1x1 cell array
 {'/Company/Components/ThrottlePositionControlComposition'}

For the listed software composition, use createCompositionAsModel to create a Simulink
representation.

createCompositionAsModel(ar,'/Company/Components/ThrottlePositionControlComposition');

Created model 'ThrottlePositionSensor' for component 1 of 5: /Company/Components/ThrottlePositionSensor
Created model 'ThrottlePositionMonitor' for component 2 of 5: /Company/Components/ThrottlePositionMonitor
Created model 'Controller' for component 3 of 5: /Company/Components/Controller
Created model 'AccelerationPedalPositionSensor' for component 4 of 5: /Company/Components/AccelerationPedalPositionSensor
Created model 'ThrottlePositionActuator' for component 5 of 5: /Company/Components/ThrottlePositionActuator

7 AUTOSAR Composition and ECU Software Simulation

7-2

Created model 'ThrottlePositionControlComposition' for composition 1 of 1:
/Company/Components/ThrottlePositionControlComposition

The function call creates a composition model that contains six component models, one for each
atomic software component in the composition. Simulink inports and outports represent AUTOSAR
ports and signal lines represent AUTOSAR component connectors.

Develop AUTOSAR Component Algorithms, Simulate, and Generate Code

After creating an initial Simulink representation of the AUTOSAR composition, you develop each
component in the composition. For each component, you refine the AUTOSAR configuration and
create algorithmic model content.

For example, the Controller component model in the ThrottlePositionControlComposition
composition model contains an atomic subsystem Runnable_Step_sys, which represents an
AUTOSAR periodic runnable. The Runnable_Step_sys subsystem contains the initial stub
implementation of the controller behavior.

Here is a possible implementation of the throttle position controller behavior. (To explore this
implementation, see the model autosar_swc_controller, which is provided with the example
“Design and Simulate AUTOSAR Components and Generate Code” on page 4-77.) The component
takes as inputs an APP sensor percent value from a pedal position sensor and a TPS percent value
from a throttle position sensor. Based on these values, the controller calculates the error. The error is
the difference between where the operator wants the throttle, based on the pedal sensor, and the
current throttle position. In this implementation, a Discrete PID Controller block uses the error value
to calculate a throttle command percent value to provide to a throttle actuator. A scope displays the
error value and the Discrete PID Controller block output value over time.

 Import AUTOSAR Composition to Simulink

7-3

As you develop AUTOSAR components, you can:

• Simulate component models individually or together in a containing composition.
• Generate ARXML component description files and algorithmic C code for testing in Simulink or

integration into an AUTOSAR run-time environment. (AUTOSAR code generation requires
Simulink Coder and Embedded Coder.)

For more information on developing, simulating, and building AUTOSAR components, see example
“Design and Simulate AUTOSAR Components and Generate Code” on page 4-77.

Update AUTOSAR Composition Model with Architectural Changes from Authoring Tool

Suppose that, after you imported the AUTOSAR software composition into Simulink and began
developing algorithms, architectural changes were made to the composition in the AUTOSAR
authoring tool.

Here is the revised composition. The changes delete a sensor component, add a logger component,
and add ports and connections at the composition and component levels. In the AUTOSAR authoring
tool, the revised composition is exported to the file
ThrottlePositionControlComposition_updated.arxml.

Use the MATLAB function updateModel to import the architectural revisions from the ARXML file.
The function updates the AUTOSAR composition model with the changes and reports the results.

7 AUTOSAR Composition and ECU Software Simulation

7-4

ar2 = arxml.importer('ThrottlePositionControlComposition_updated.arxml');
updateModel(ar2,'ThrottlePositionControlComposition');

Updating model ThrottlePositionSensor
Saving original model as ThrottlePositionSensor_backup.slx
Creating HTML report ThrottlePositionSensor_update_report.html
Updated model 'ThrottlePositionSensor' for component 1 of 6:
/Company/Components/ThrottlePositionSensor
Updating model ThrottlePositionMonitor
Saving original model as ThrottlePositionMonitor_backup.slx
Creating HTML report ThrottlePositionMonitor_update_report.html
Updated model 'ThrottlePositionMonitor' for component 2 of 6:
/Company/Components/ThrottlePositionMonitor
Updated model 'Logger' for component 3 of 6: /Company/Components/Logger
Updating model Controller
Saving original model as Controller_backup.slx
Creating HTML report Controller_update_report.html
Updated model 'Controller' for component 4 of 6: /Company/Components/Controller
Updating model AccelerationPedalPositionSensor
Saving original model as AccelerationPedalPositionSensor_backup.slx
Creating HTML report AccelerationPedalPositionSensor_update_report.html
Updated model 'AccelerationPedalPositionSensor' for component 5 of 6:
/Company/Components/AccelerationPedalPositionSensor
Updating model ThrottlePositionActuator
Saving original model as ThrottlePositionActuator_backup.slx
Creating HTML report ThrottlePositionActuator_update_report.html
Updated model 'ThrottlePositionActuator' for component 6 of 6:
/Company/Components/ThrottlePositionActuator
Updated model 'ThrottlePositionControlComposition' for composition 1 of 1:
/Company/Components/ThrottlePositionControlComposition
Updating model ThrottlePositionControlComposition
Saving original model as ThrottlePositionControlComposition_backup.slx
Creating HTML report ThrottlePositionControlComposition_update_report.html

After the update, in the composition model, highlighting indicates where changes occurred.

The function also generates and displays an HTML AUTOSAR update report. The report lists changes
that the update made to Simulink and AUTOSAR elements in the composition model. In the report,
you can click hyperlinks to navigate from change descriptions to model changes, and to navigate from
the main report to individual component reports.

Related Links

• createCompositionAsModel
• updateModel

 Import AUTOSAR Composition to Simulink

7-5

• “Component Creation”
• “Import AUTOSAR Software Component Updates” on page 3-25
• “Design and Simulate AUTOSAR Components and Generate Code” on page 4-77

7 AUTOSAR Composition and ECU Software Simulation

7-6

Combine and Simulate AUTOSAR Software Components
When you develop multiple AUTOSAR software component models that are interconnected and work
together, you can combine them in an AUTOSAR composition model for simulation. A composition is
an AUTOSAR software component that aggregates related groups of software components.

To create a Simulink representation of an AUTOSAR composition, take one of these actions:

• Import an AUTOSAR XML (ARXML) description of a composition (Classic Platform).
• Create a model and use Model blocks to reference and connect AUTOSAR component models.

Alternatively, if you have System Composer software, you can create an AUTOSAR architecture model
and use Software Composition blocks to model AUTOSAR compositions. For more information, see
“Software Architecture Modeling”.

When you simulate a composition model, you simulate the combined behavior of the aggregated
AUTOSAR components.

After you develop AUTOSAR components and compositions, you can test groups of components that
belong together in a system-level simulation. For example, you can create a system-level model
containing compositions, components, a scheduler, a plant model, and potentially Basic Software
service components and callers. You can configure system-level models to perform closed-loop or
open-loop system simulations.

In this section...
“Import AUTOSAR Composition as Model (Classic Platform)” on page 7-7
“Create Composition Model for Simulating AUTOSAR Components” on page 7-8
“Alternatives for AUTOSAR System-Level Simulation” on page 7-9

Import AUTOSAR Composition as Model (Classic Platform)
A composition is an AUTOSAR software component that aggregates related groups of software
components. Compositions support component scaling and help to manage complexity in a design.

If you are developing software components for the AUTOSAR Classic Platform, you can create an
AUTOSAR composition model by importing a composition description from ARXML files. Use the
AUTOSAR importer function createCompositionAsModel. This function call creates composition
model ThrottlePositionControlComposition from the example ARXML file
ThrottlePositionControlComposition.arxml. The ARXML file is located at matlabroot/
examples/autosarblockset/data, which is on the default MATLAB search path.
ar = arxml.importer('ThrottlePositionControlComposition.arxml');
createCompositionAsModel(ar,'/Company/Components/ThrottlePositionControlComposition');

 Combine and Simulate AUTOSAR Software Components

7-7

To simulate the combined behavior of the aggregated AUTOSAR components, simulate the
composition model. Click the Run button in the model window or enter this MATLAB command.
simOutComposition = sim('ThrottlePositionControlComposition');

For more information, see “Import AUTOSAR Composition to Simulink” on page 7-2.

Create Composition Model for Simulating AUTOSAR Components
To combine related AUTOSAR software components in a composition model for simulation, create a
Simulink model and use Model blocks to reference and connect AUTOSAR component models.

This example creates an AUTOSAR composition model. The created model is a simplified version of
AUTOSAR example model autosar_composition. To expedite configuration and resolve issues, you
can compare the new model against example model autosar_composition. If needed, you can
copy elements such as inports and outports between the models. For a diagram of the finished
composition model, see step 4.

1 Move AUTOSAR software component models that you want to simulate together into a working
folder and cd to that folder. This example uses component models copied from matlabroot/
examples/autosarblockset/main (cd to folder).

• autosar_swc_actuator
• autosar_swc_controller
• autosar_swc_pedal_sensor
• autosar_swc_throttle_sensor

2 Create a Simulink model. Save the model to the working folder with the name composition.
3 For each AUTOSAR component model:

a Open the component model separately and verify that it simulates.
b In the composition model, add a Model block and configure the block to reference the

component. In the Model block parameters, select option Schedule rates. This option allows
rate-based runnable tasks to be scheduled on the same basis as exported functions.

c Add ports that the component requires.
d Component model autosar_swc_throttle_sensor requires a special adjustment,

because parent model composition (unlike example model autosar_composition)
references the component only once. Open Model Explorer, select the model workspace for
autosar_swc_throttle_sensor, select data object TPSPercent_LkupTbl, and clear the
Argument option.

7 AUTOSAR Composition and ECU Software Simulation

7-8

4 When you have created Model blocks for each AUTOSAR component, connect the components as
shown here.

To simulate the combined behavior of the aggregated AUTOSAR components, simulate the
composition model. Click the Run button in the model window or enter this MATLAB command.
simOutComposition = sim('composition');

For more information, see “Design and Simulate AUTOSAR Components and Generate Code” on page
4-77.

Alternatives for AUTOSAR System-Level Simulation
After you develop AUTOSAR components and compositions, you can test groups of components that
belong together in a system-level simulation. For example, you can create a system-level model
containing compositions, components, a plant model, and potentially Basic Software service
components and callers. You can configure system-level models to perform closed-loop or open-loop
system simulations. For a system-level model, use a Simulink model or a Simulink Test test harness
model.

For an example of a closed-loop simulation, open example model autosar_system. This model
provides a system-level test harness for the AUTOSAR composition model autosar_composition.
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
addpath(fullfile(matlabroot,'/examples/autosarblockset/data'));
open_system('autosar_system');

 Combine and Simulate AUTOSAR Software Components

7-9

A throttle position scope opens with the model. If you simulate system-level model autosar_system,
the scope indicates how well the throttle-position control algorithms in composition model
autosar_composition are tracking the pedal input. To improve the behavior, you can modify
component algorithms in the composition or change a sensor source.
simOutSystem = sim('autosar_system');

7 AUTOSAR Composition and ECU Software Simulation

7-10

For more information, see “Design and Simulate AUTOSAR Components and Generate Code” on page
4-77.

For an example of open-loop simulation using Simulink Test, see “Testing AUTOSAR Compositions”
(Simulink Test). This example performs back-to-back testing for an AUTOSAR composition model.

For an example of simulating AUTOSAR Basic Software services, see “Simulate AUTOSAR Basic
Software Services and Run-Time Environment” on page 7-36.

See Also
createCompositionAsModel

Related Examples
• “Import AUTOSAR Composition to Simulink” on page 7-2
• “Design and Simulate AUTOSAR Components and Generate Code” on page 4-77
• “Testing AUTOSAR Compositions” (Simulink Test)
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36

More About
• “AUTOSAR Software Components and Compositions” on page 1-11

 Combine and Simulate AUTOSAR Software Components

7-11

Model AUTOSAR Basic Software Service Calls
For the AUTOSAR Classic Platform, the AUTOSAR standard defines important services as part of
Basic Software (BSW) that runs in the AUTOSAR Runtime Environment (RTE). Examples include
services provided by the Diagnostic Event Manager (Dem), the Function Inhibition Manager (FiM),
and the NVRAM Manager (NvM). In the AUTOSAR RTE, AUTOSAR software components typically
access BSW services using client-server or sender-receiver communication.

To support system-level modeling of AUTOSAR components and services, AUTOSAR Blockset
provides an AUTOSAR Basic Software block library. The library contains preconfigured Function
Caller blocks for modeling component calls to AUTOSAR BSW services.

• Diagnostic Event Manager (Dem) blocks — Calls to Dem service interfaces, including
DiagnosticInfoCaller, DiagnosticMonitorCaller, DiagnosticOperationCycleCaller, and
DiagnosticEventAvailableCaller.

• Function Inhibition Manager (FiM) blocks — Calls to FiM service interfaces, including Function
Inhibition Caller and Control Function Available Caller.

• NVRAM Manager (NvM) blocks — Calls to NvM service interfaces, including NvMAdminCaller
and NvMServiceCaller.

To implement client calls to AUTOSAR BSW service interfaces in your AUTOSAR software
component, you drag and drop Basic Software blocks into an AUTOSAR model. Each block has
prepopulated parameters, such as Client port name and Operation. If you modify the operation
selection, the software updates the block inputs and outputs to correspond.

To configure the added blocks in the AUTOSAR software component, click the Update button in
the Code Mappings editor view of the model. The software creates AUTOSAR client-service
interfaces, operations, and ports, and maps each Simulink function caller to an AUTOSAR client port
and operation.

For more information, see “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page
7-14, “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18, and
“Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28.

To simulate an AUTOSAR component model that calls BSW services, create a containing composition,
system, or harness model. In that containing model, provide reference implementations of the Dem
and NvM service operations called by the component.

The AUTOSAR Basic Software block library includes a Diagnostic Service Component block and an
NVRAM Service Component block. The blocks provide reference implementations of Dem/FiM and
NvM service operations. To support simulation of component calls to the Dem, FiM, and NvM
services, include the blocks in the containing model. You can insert the blocks in either of two ways:

• Automatically insert the blocks by creating a Simulink Test harness model.
• Manually insert the blocks into a containing composition, system, or harness model.

For more information, see “Configure AUTOSAR Basic Software Service Implementations for
Simulation” on page 7-33 and “Simulate AUTOSAR Basic Software Services and Run-Time
Environment” on page 7-36.

7 AUTOSAR Composition and ECU Software Simulation

7-12

See Also

Related Examples
• “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page 7-14
• “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18
• “Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36

More About
• “Model AUTOSAR Nonvolatile Memory” on page 2-41
• “Model AUTOSAR Communication” on page 2-22

 Model AUTOSAR Basic Software Service Calls

7-13

Configure Calls to AUTOSAR Diagnostic Event Manager Service
For the AUTOSAR Classic Platform, the AUTOSAR standard defines important services as part of
Basic Software (BSW) that runs in the AUTOSAR Runtime Environment (RTE). Examples include
services provided by the Diagnostic Event Manager (Dem), the Function Inhibition Manager (FiM),
and the NVRAM Manager (NvM). In the AUTOSAR RTE, AUTOSAR software components typically
access BSW services using client-server or sender-receiver communication.

To support system-level modeling of AUTOSAR components and services, AUTOSAR Blockset
provides an AUTOSAR Basic Software block library. The library contains preconfigured blocks for
modeling component calls to AUTOSAR BSW services and reference implementations of the BSW
services. For information about using the blocks to model client calls to AUTOSAR BSW service
interfaces, see “Model AUTOSAR Basic Software Service Calls” on page 7-12.

For a live-script example of simulating AUTOSAR BSW services, see example “Simulate AUTOSAR
Basic Software Services and Run-Time Environment” on page 7-36.

Here is an example of configuring client calls to Dem service interfaces in your AUTOSAR software
component.

1 Open a model that is configured for AUTOSAR code generation. Using the Library Browser or by
typing block names in the model window, add Dem blocks to the model. This example adds the
blocks DiagnosticInfoCaller and DiagnosticMonitorCaller to a writable copy of the example model
autosar_swc.

2 Open each block and examine the parameters, especially Operation. If you select a different
operation and click Apply, the software updates the block inputs and outputs to match the
arguments of the selected operation.

This example changes the Operation for the DiagnosticInfoCaller block from GetEventStatus
to GetEventFailed. (For an example of using GetEventFailed in a throttle position monitor
implementation, see example “Simulate AUTOSAR Basic Software Services and Run-Time
Environment” on page 7-36.)

7 AUTOSAR Composition and ECU Software Simulation

7-14

For some Dem operations, such as GetDTCOfEvent and SetEventStatus, the block
parameters dialog box displays a data type parameter. The parameter specifies an enumerated
data type for a function input that represents a Dem format type or event status. Default data
types are provided, such as Dem_DTCFormatType or Dem_EventStatusType. For more
information about format type or event status values, see the AUTOSAR standard Specification of
Diagnostic Event Manager.

3 Open the Code Mappings editor. To update the Simulink to AUTOSAR mapping of the model with
changes to Simulink function callers, click the Update button . The software creates
AUTOSAR client-service interfaces, operations, and ports, and maps each Simulink function
caller to an AUTOSAR client port and operation.

For example, for the DiagnosticMonitorCaller block in this example, for which the
SetEventStatus operation is selected:

• The software creates C-S interface DiagnosticMonitor, and under DiagnosticMonitor,
its supported operations. For each operation, arguments are provided with read-only
properties. Here are the arguments for the DiagnosticMonitor operation
SetEventStatus displayed in the AUTOSAR Dictionary.

 Configure Calls to AUTOSAR Diagnostic Event Manager Service

7-15

• The software creates a client port with the default name DiagnosticMonitor. Unlike the C-
S-interface, operation, and argument names, the client port name can be customized. The
client port is mapped to the DiagnosticMonitor interface.

• The Code Mappings editor, Function Callers tab, maps the DiagnosticMonitor function
caller block to AUTOSAR client port DiagnosticMonitor and AUTOSAR operation
SetEventStatus.

4 Optionally, build your component model and examine the generated C and ARXML code. The C
code includes the client calls to the BSW services, for example:
/* FunctionCaller: '<Root>/DiagnosticInfoCaller' */
Rte_Call_DiagnosticInfo_GetEventFailed(&rtb_DiagnosticInfoCaller_o1);

/* FunctionCaller: '<Root>/DiagnosticMonitorCaller' */
Rte_Call_DiagnosticMonitor_SetEventStatus(DEM_EVENT_STATUS_PASSED);

Generated RTE include files define the server operation call points, such as
Rte_Call_DiagnosticMonitor_SetEventStatus, and argument data types, such as
enumeration type Dem_EventStatusType.

The ARXML code defines the BSW service operations called by the component as server call
points, for example:

7 AUTOSAR Composition and ECU Software Simulation

7-16

<SERVER-CALL-POINTS>
...
 <SYNCHRONOUS-SERVER-CALL-POINT UUID="...">
 <SHORT-NAME>SC_DiagnosticMo_334e61e63627b44b</SHORT-NAME>
 <OPERATION-IREF>
 <CONTEXT-R-PORT-REF DEST="R-PORT-PROTOTYPE">
 /Company/Powertrain/Components/ASWC/DiagnosticMonitor
 </CONTEXT-R-PORT-REF>
 <TARGET-REQUIRED-OPERATION-REF DEST="CLIENT-SERVER-OPERATION">
 /AUTOSAR/Services/Dem/DiagnosticMonitor/SetEventStatus
 </TARGET-REQUIRED-OPERATION-REF>
 </OPERATION-IREF>
 <TIMEOUT>1.0E-06</TIMEOUT>
 </SYNCHRONOUS-SERVER-CALL-POINT>
</SERVER-CALL-POINTS>

5 To simulate the component model, create a containing composition, system, or test harness
model. In that containing model, insert reference implementations of the Dem GetEventFailed
and GetEventStatus service operations.

The AUTOSAR Basic Software block library provides a Diagnostic Service Component block,
which provides reference implementations of Dem service operations. You can manually insert
the block into a containing composition, system, or harness model, or automatically insert the
block by creating a Simulink Test harness model.

For more information, see “Configure AUTOSAR Basic Software Service Implementations for
Simulation” on page 7-33 and “Simulate AUTOSAR Basic Software Services and Run-Time
Environment” on page 7-36.

See Also
DiagnosticInfoCaller | DiagnosticMonitorCaller | DiagnosticOperationCycleCaller |
DiagnosticEventAvailableCaller | Diagnostic Service Component

Related Examples
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36
• “Configure AUTOSAR Client-Server Communication” on page 4-142

More About
• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Model AUTOSAR Communication” on page 2-22

 Configure Calls to AUTOSAR Diagnostic Event Manager Service

7-17

Configure Calls to AUTOSAR Function Inhibition Manager
Service

For the AUTOSAR Classic Platform, the AUTOSAR standard defines important services as part of
Basic Software (BSW) that runs in the AUTOSAR Runtime Environment (RTE). Examples include
services provided by the Diagnostic Event Manager (Dem), the Function Inhibition Manager (FiM),
and the NVRAM Manager (NvM). In the AUTOSAR RTE, AUTOSAR software components typically
access BSW services using client-server or sender-receiver communication.

To support system-level modeling of AUTOSAR components and services, AUTOSAR Blockset
provides an AUTOSAR Basic Software block library. The library contains preconfigured blocks for
modeling component calls to AUTOSAR BSW services and reference implementations of the BSW
services. For information about using the blocks to model client calls to AUTOSAR BSW service
interfaces, see “Model AUTOSAR Basic Software Service Calls” on page 7-12.

For live-script examples of simulating AUTOSAR BSW services, see examples “Simulate AUTOSAR
Basic Software Services and Run-Time Environment” on page 7-36 and “Configure and Simulate
AUTOSAR Function Inhibition Service Calls” on page 7-49.

As defined in the AUTOSAR specification, the Function Inhibition Manager provides a control
mechanism for selectively inhibiting (that is, deactivating) function execution in software component
runnables, based on function identifiers (FIDs) with inhibition conditions. For example, an FID can
represent functionality that must be stopped if a specific failure occurs.

The Function Inhibition Manager is closely related to the Diagnostic Event Manager, because
inhibition conditions can be based on the status of diagnostic events. For example, if a sensor failure
event is reported to the Diagnostic Event Manager, the Function Inhibition Manager can inhibit the
associated function identifier and stop execution of the corresponding functionality.

AUTOSAR Blockset provides FiM and Dem blocks that allow you to query the status of function
inhibition conditions and configure function inhibition criteria based on diagnostic event status.

In this section...
“Model Function Inhibition” on page 7-18
“Scope Failures to Operation Cycles” on page 7-23
“Control Function Availability During Failure or For Testing” on page 7-23
“Configure Service Calls for Function Inhibition” on page 7-24

Model Function Inhibition
AUTOSAR software components use function inhibition to switch functions on or off depending on the
state of Diagnostic Event Manager (Dem) events. Software components can react to an event such as
a sensor success or failure by allowing or preventing execution of an associated function.

Consider an AUTOSAR software component model in which a Dem Set Status block serves as a
monitor for new functionality within the component. Dem events passed by using the Set Status block
indicate whether conditions such as sensor failure have occurred. Event status determines whether
execution of associated downstream functions can proceed. The functions run only if no failure events
are reported.

To implement function inhibition for new functionality in the component:

7 AUTOSAR Composition and ECU Software Simulation

7-18

1 Open the AUTOSAR software component model.

Open the Set Status block dialog box. Examine the client port name and operation values.
Confirm that the client port and its client interface are defined in the AUTOSAR Dictionary.

2 Model the new functionality such that it will execute only if event status indicates no sensor
failures. This example places the new functionality in an enabled subsystem.

3 Add a Function Inhibition Caller block to the model. Open the block dialog box and configure the
block to request a GetFunctionPermission operation from the FiM FunctionInhibition
service interface. Specify a client port name and a sample time.

 Configure Calls to AUTOSAR Function Inhibition Manager Service

7-19

Open the Code Mappings editor and click the Update button. The software creates the specified
client port and interface in the AUTOSAR Dictionary, and maps the Get Permission caller block to
the specified AUTOSAR client port and operation.

4 Connect the Get Permission block to the enable port of the subsystem that contains the new
functionality. The block represents evaluation of the function inhibition conditions for the new
functionality. If the functionality is not inhibited and therefore has permission to run, the Get
Permission block returns true, enabling the subsystem.

Here is the revised software component model.

5 Place the software component model in a test harness.

In the test harness model, to provide reference implementations of the Dem Get Status and FiM
Get Permission services for simulation, add a Diagnostic Service Component block. Update the
model.

7 AUTOSAR Composition and ECU Software Simulation

7-20

6 Open the Diagnostic Service Component block dialog box. To refresh RTE and FiM tables in the
dialog box at any point, update the model.

On the RTE tab, you configure event and function identifiers for events that can trigger function
inhibition. In this example, the model hierarchy contains only one event port and one FID port, so
the RTE tab requires no further configuration.

If the model hierarchy contains additional ports for multiple Get Permission blocks, with
functionality distributed across multiple components, you can use the RTE tab to assign ports to
the same FID to group them or separate FIDs to address them individually. For a function
inhibition example with multiple ports and distributed functionality, see “Configure and Simulate
AUTOSAR Function Inhibition Service Calls” on page 7-49.

7 After event and function identifiers are configured, switch to the FiM tab. On the FiM tab, you
add and configure the inhibition conditions that determine when Get Permission blocks allow
functionality to operate.

The FiM tab lists function identifiers representing functions in the model hierarchy for which
function inhibition is implemented. In this example, the model hierarchy contains one FID.

 Configure Calls to AUTOSAR Function Inhibition Manager Service

7-21

8 To add an inhibition condition for the FID, select the FID and click the Add inhibition condition
button. A row for the inhibition condition appears under the FID.

In the row, select an event ID value (matching an event ID listed in the RTE tab). Then, for the
FID and event ID pair, select an inhibition mask value. The AUTOSAR specifications define mask
values in a FiMInhibitionMask values table.

In this example, the function represented by FID 1 is inhibited if the event represented by event
ID 1 is LAST_FAILED.

9 Update and simulate the harness model.

Next steps in developing the software component include:

• Addressing how to trigger the event.
• Adding the functionality to inhibit.

For a larger-scale example of modeling AUTOSAR function inhibition, see “Configure and Simulate
AUTOSAR Function Inhibition Service Calls” on page 7-49.

7 AUTOSAR Composition and ECU Software Simulation

7-22

Scope Failures to Operation Cycles
In an AUTOSAR software component, operation cycles represent automotive cycles, such as ignition
cycles, power cycles, warm up cycles, or on-board diagnostic (OBD) cycles. A cycle can be started,
stopped, or queried by using Diagnostic Event Manager services. You can use operation cycles to
determine if a given event has failed within a given time.

Operation cycles split a simulation into periods of time, such as one minute cycles. In each cycle, the
software can check if a diagnostic condition (event) has been TESTED (a FiM condition) during that
cycle and inhibit functions accordingly.

The BSW block DiagnosticOperationCycleCaller supports the SetOperationCycleState and
GetOperationCycleState services. A component calls the services to control component operation
cycles, which are used to scope failures to a time period. Calling SetOperationCycleState with
the value Dem_OperationCycleStateType.DEM_CYCLE_STATE_START starts an operation cycle.
Passing in the value Dem_OperationCycleStateType.DEM_CYCLE_STATE_END ends an operation
cycle. Calling GetOperationCycleState queries the current state of an operation cycle.

For an example use of the DiagnosticOperationCycleCaller block and the
SetOperationCycleState service, see “Configure and Simulate AUTOSAR Function Inhibition
Service Calls” on page 7-49.

Control Function Availability During Failure or For Testing
The Function Inhibition Manager supports inhibition criteria for restricting functional blocks from
executing until logical and functional predecessors have run, or for restricting execution of a safety
system until a failure is verified. However, you can restrict use of functionality independently of
inhibition criteria. For example, a sensor component can disable reading of its sensor data during a
failure or during testing of other system functionality.

The BSW block Control Function Available Caller supports the SetFunctionAvailable service,
which provides a granular mechanism to inhibit specific functionality. A component uses
SetFunctionAvailable with an input signal value of false to inhibit associated functionality, so
that the Get Permission block for the functionality returns 0. In this example, a sensor monitor uses
SetFunctionAvailable to inform a central monitor component whether sensor measurements are
available.

 Configure Calls to AUTOSAR Function Inhibition Manager Service

7-23

The central monitor uses Function Inhibition Caller blocks and the GetFunctionPermission
service to decide whether to account for measurements coming from each sensor. The central
monitor has as many Get Permission blocks as there are sensors.

The FiM tab of the DIagnostic Service Component block configures the details of failure events. If a
function is available, the FiM tab ID and mask settings control function inhibition. If a function is not
available, GetFunctionPermission always returns false.

Configure Service Calls for Function Inhibition
As part of implementing function inhibition, you configure client calls to FiM-related service
interfaces in your AUTOSAR software component. Here is an example of configuring client calls to
query the status of function inhibition conditions.

1 Open a model that is configured for AUTOSAR code generation. This example uses example
model autosar_bsw_fimmonitor, which is associated with the example “Configure and
Simulate AUTOSAR Function Inhibition Service Calls” on page 7-49. Using the Library Browser
or by typing block names in the model window, add FiM block Function Inhibition Caller to the
model.

For the purposes of this example, connect the block outputs to Terminator blocks.

2 Open the new block and examine the parameters. For the FiM service call, the Client port name
is FiM_FunctionInhibition and the Operation is GetFunctionPermission. Set Sample
time to 0.005, which matches the other GetFunctionPermission caller blocks in the model.

7 AUTOSAR Composition and ECU Software Simulation

7-24

3 Open the Code Mappings editor. To update the Simulink to AUTOSAR mapping of the model with
changes to Simulink function callers, click the Update button . The software creates
AUTOSAR client-service interfaces, operations, and ports, and maps each Simulink function
caller to an AUTOSAR client port and operation.

For example, for the Function Inhibition Caller block in this example, for which the
GetFunctionPermission operation is selected:

• The software creates C-S interface FiM_FunctionInhibition, and under
FiM_FunctionInhibition, its supported operation, GetFunctionPermission. Operation
arguments are provided with read-only properties. In the AUTOSAR Dictionary, here are the
arguments for the FiM_FunctionInhibition operation GetFunctionPermission.

• The software creates a client port with the default name FiM_FunctionInhibition. Unlike
the C-S-interface, operation, and argument names, the client port name can be customized.
The client port is mapped to the FiM_FunctionInhibition interface.

 Configure Calls to AUTOSAR Function Inhibition Manager Service

7-25

• The Code Mappings editor maps the Function Inhibition Caller function caller block to
AUTOSAR client port FiM_FunctionInhibition and AUTOSAR operation
GetFunctionPermission.

4 Optionally, build your component model and examine the generated C and ARXML code. The C
code includes the client calls to the BSW services, for example:
 /* FunctionCaller: '<Root>/Function Inhibition Caller' */
 Rte_Call_FiM_FunctionInhibition_GetFunctionPermission
 (&rtb_FunctionInhibitionCaller_o1);

Generated RTE include files define the server operation call points, such as
Rte_Call_FiM_FunctionInhibition_GetFunctionPermission.

The ARXML code defines the BSW service operations called by the component as server call
points, for example:
<SERVER-CALL-POINTS>
 <SYNCHRONOUS-SERVER-CALL-POINT UUID="...">
 <SHORT-NAME>SC_FiM_Function_60fb8d34c7807f7b</SHORT-NAME>
 <OPERATION-IREF>
 <CONTEXT-R-PORT-REF DEST="R-PORT-PROTOTYPE">
 /ThrottlePositionMonitorCompo_pkg/ThrottlePositionMonitorCompo_swc
 /ThrottlePositionMonitor/FiM_FunctionInhibition
 </CONTEXT-R-PORT-REF>
 <TARGET-REQUIRED-OPERATION-REF DEST="CLIENT-SERVER-OPERATION">
 /AUTOSAR/Services/FiM/FiM_FunctionInhibition/GetFunctionPermission
 </TARGET-REQUIRED-OPERATION-REF>
 </OPERATION-IREF>
 <TIMEOUT>1.0E-06</TIMEOUT>
 </SYNCHRONOUS-SERVER-CALL-POINT>
 ...
</SERVER-CALL-POINTS>

5 To simulate the component model, create a containing composition, system, or test harness
model. In that containing model, insert a reference implementation of the FiM
GetFunctionPermission service operation.

The AUTOSAR Basic Software block library provides a Diagnostic Service Component block,
which provides reference implementations of Dem and FiM service operations. You can manually
insert the block into a containing composition, system, or harness model, or automatically insert
the block by creating a Simulink Test harness model.

For more information, see “Configure AUTOSAR Basic Software Service Implementations for
Simulation” on page 7-33.

7 AUTOSAR Composition and ECU Software Simulation

7-26

Example “Configure and Simulate AUTOSAR Function Inhibition Service Calls” on page 7-49
provides a set of example models, which together illustrate key aspects of implementing function
inhibition, including:

• Query the status of inhibition conditions (FunctionInhibition operation
GetFunctionPermission).

• Configure inhibition criteria based on event status (Diagnostic Service Component block dialog,
RTE and FiM tabs).

• Define operation cycles to scope failures to a time period (Dem OperationCycle operation
SetOperationCycleState).

See Also
Function Inhibition Caller | Control Function Available Caller | DiagnosticOperationCycleCaller |
Diagnostic Service Component

Related Examples
• “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page 7-14
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36
• “Configure and Simulate AUTOSAR Function Inhibition Service Calls” on page 7-49
• “Configure AUTOSAR Client-Server Communication” on page 4-142

More About
• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Model AUTOSAR Communication” on page 2-22

 Configure Calls to AUTOSAR Function Inhibition Manager Service

7-27

Configure Calls to AUTOSAR NVRAM Manager Service
For the AUTOSAR Classic Platform, the AUTOSAR standard defines important services as part of
Basic Software (BSW) that runs in the AUTOSAR Runtime Environment (RTE). Examples include
services provided by the Diagnostic Event Manager (Dem), the Function Inhibition Manager (FiM),
and the NVRAM Manager (NvM). In the AUTOSAR RTE, AUTOSAR software components typically
access BSW services using client-server or sender-receiver communication.

To support system-level modeling of AUTOSAR components and services, AUTOSAR Blockset
provides an AUTOSAR Basic Software block library. The library contains preconfigured blocks for
modeling component calls to AUTOSAR BSW services and reference implementations of the BSW
services. For information about using the blocks to model client calls to AUTOSAR BSW service
interfaces, see “Model AUTOSAR Basic Software Service Calls” on page 7-12.

For a live-script example of simulating AUTOSAR BSW services, see example “Simulate AUTOSAR
Basic Software Services and Run-Time Environment” on page 7-36.

For more information about modeling software component access to AUTOSAR nonvolatile memory,
see “Model AUTOSAR Nonvolatile Memory” on page 2-41.

Here is an example of configuring client calls to NvM service interfaces in your AUTOSAR software
component.

1 Open a model that is configured for AUTOSAR code generation. Using the Library Browser or by
typing block names in the model window, add NvM blocks to the model. This example adds the
blocks NvMAdminCaller and NvMServiceCaller to a writable copy of the example model
autosar_swc.

2 Open each block and examine the parameters, especially Operation. If you select a different
operation and click Apply, the software updates the block inputs and outputs to match the
arguments of the selected operation.

This example changes the Operation for the NvMServiceCaller block from GetDataIndex to
ReadBlock. (For an example of using readBlock in a throttle position sensor implementation,
see example “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page
7-36.)

7 AUTOSAR Composition and ECU Software Simulation

7-28

For some NvM operations, such as ReadBlock and WriteBlock, the block parameters dialog
box displays an argument specification parameter. The parameter specifies data type and
dimension information for data to be read or written by the operation, set to uint8(1) by
default.

• To specify a multidimensional data type, you can use array syntax, such as int8([1 1; 1
1]).

• To specify a structured data type, you can create a Simulink.Parameter data object, type it
with a Simulink.Bus object, and reference the parameter name.

3 Open the Code Mappings editor. To update the Simulink to AUTOSAR mapping of the model with
changes to Simulink function callers, click the Update button . The software creates
AUTOSAR client-service interfaces, operations, and ports, and maps each Simulink function
caller to an AUTOSAR client port and operation.

For example, for the NvMServiceCaller block in this example, for which the ReadBlock
operation is selected:

 Configure Calls to AUTOSAR NVRAM Manager Service

7-29

• The software creates C-S interface NvMService, and under NvMService, its supported
operations. For each operation, arguments are provided with read-only properties. Here are
the arguments for the NvMService operation ReadBlock displayed in the AUTOSAR
Dictionary.

• The software creates a client port with the default name NvMService. Unlike the C-S-
interface, operation, and argument names, the client port name can be customized. The client
port is mapped to the NvMService interface.

• The Code Mappings editor, Function Callers tab, maps the NvMService function caller
block to AUTOSAR client port NvMService and AUTOSAR operation ReadBlock.

4 Optionally, build your model and examine the generated C and ARXML code.

In the block dialog step, if you selected operation ReadBlock for the NvMServiceCaller block,
code generation requires adding data store blocks to the model. Connect the block first outport
to a Data Store Write block, and add a Data Store Memory block. For both blocks, specify data
store name A. For example:

7 AUTOSAR Composition and ECU Software Simulation

7-30

The C code includes the client calls to the BSW services, for example:
/* FunctionCaller: '<Root>/NvMServiceCaller' */
Rte_Call_NvMService_ReadBlock(&rtDW.A);
...
/* FunctionCaller: '<Root>/NvMAdminCaller' */
Rte_Call_NvMAdmin_SetBlockProtection(false);

Generated RTE include files define the server operation call points, such as
Rte_Call_NvMService_ReadBlock.

The ARXML code defines the BSW service operations called by the component as server call
points, for example:
<SERVER-CALL-POINTS>
...
 <ASYNCHRONOUS-SERVER-CALL-POINT UUID="...">
 <SHORT-NAME>SC_NvMService_ReadBlock</SHORT-NAME>
 <OPERATION-IREF>
 <CONTEXT-R-PORT-REF DEST="R-PORT-PROTOTYPE">
 /Company/Powertrain/Components/ASWC/NvMService
 </CONTEXT-R-PORT-REF>
 <TARGET-REQUIRED-OPERATION-REF DEST="CLIENT-SERVER-OPERATION">
 /AUTOSAR/Services/NvM/NvMService/ReadBlock
 </TARGET-REQUIRED-OPERATION-REF>
 </OPERATION-IREF>
 <TIMEOUT>1</TIMEOUT>
 </ASYNCHRONOUS-SERVER-CALL-POINT>
</SERVER-CALL-POINTS>

5 To simulate the component model, create a containing composition, system, or test harness
model. In that containing model, insert reference implementations of the NvM ReadBlock and
SetBlockProtection service operations.

The AUTOSAR Basic Software block library provides an NVRAM Service Component block, which
provides reference implementations of NvM service operations. You can manually insert the
block into a containing composition, system, or harness model, or automatically insert the block
by creating a Simulink Test harness model.

 Configure Calls to AUTOSAR NVRAM Manager Service

7-31

For more information, see “Configure AUTOSAR Basic Software Service Implementations for
Simulation” on page 7-33 and “Simulate AUTOSAR Basic Software Services and Run-Time
Environment” on page 7-36.

See Also
NvMAdminCaller | NvMServiceCaller | NVRAM Service Component

Related Examples
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36
• “Configure AUTOSAR Client-Server Communication” on page 4-142

More About
• “Model AUTOSAR Nonvolatile Memory” on page 2-41
• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Model AUTOSAR Communication” on page 2-22

7 AUTOSAR Composition and ECU Software Simulation

7-32

Configure AUTOSAR Basic Software Service Implementations
for Simulation

AUTOSAR Blockset provides reference implementations of Diagnostic Event Manager (Dem),
Function Inhibition Manager (FiM), and NVRAM Manager (NvM) services supported by AUTOSAR
Basic Software (BSW) caller blocks. When coupled with the BSW caller blocks, the reference
implementations allow you to configure and run system- or composition-level simulations of
AUTOSAR BSW service calls. The ability to simulate calls into BSW services can help identify
modeling problems before the AUTOSAR generated code reaches the AUTOSAR Runtime
Environment (RTE).

To configure BSW caller blocks and BSW service reference implementations for simulation:

1 In one or more AUTOSAR component models, configure calls to AUTOSAR BSW services. Follow
the procedures described in “Configure Calls to AUTOSAR Diagnostic Event Manager Service”
on page 7-14, “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18,
or “Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28.

2 For simulation purposes, create a composition, system, or harness model that contains instances
of the AUTOSAR component models. This procedure uses AUTOSAR example model
autosar_bsw_presim, which is used in example “Simulate AUTOSAR Basic Software Services
and Run-Time Environment” on page 7-36. The referenced component models call NvM service
operation ReadBlock and Dem service operations SetEventStatus and GetEventFailed.

Alternatively, as shown in the next step, you can use Simulink Test to create a harness model.
3 In the containing model, provide reference implementations of the Dem or NvM service

operations that your AUTOSAR component models call. For Dem and NvM service operations, the
AUTOSAR Basic Software block library provides Diagnostic Service Component and NVRAM
Service Component blocks.

You can insert a Service Component block in either of two ways:

• Automatically insert the block by creating a Simulink Test harness model. In an AUTOSAR
component model or a containing model, on the Apps tab, click Simulink Test. Then, on the

 Configure AUTOSAR Basic Software Service Implementations for Simulation

7-33

Tests tab, click Add Test Harness. In the Create Test Harness dialog box, click OK. The
software compiles the model, adds a Diagnostic or NVRAM Service Component block, and
creates ports and other elements required for simulation. For example, here is a test harness
created for the presimulation integration model in example “Simulate AUTOSAR Basic
Software Services and Run-Time Environment” on page 7-36.

• Manually insert the block into a containing composition, system, or harness model. Using the
Library Browser or add_block command, or by typing block names in the model window, add
a service component block to the containing model. Example “Simulate AUTOSAR Basic
Software Services and Run-Time Environment” on page 7-36 uses these commands to add
Diagnostic Service Component and NVRAM Service Component blocks to a containing model
and then update the model diagram.
add_block('autosarlibdem/Diagnostic Service Component',...
 'autosar_bsw_presim/Diagnostic Service Component');
add_block('autosarlibnvm/NVRAM Service Component',...
 'autosar_bsw_presim/NVRAM Service Component');
set_param('autosar_bsw_presim','SimulationCommand','update');

4 Each service component block has prepopulated parameters. Examine the parameter settings
and consider if modifications are required, based on how you are using the Dem, FiM, and NvM
service operations. For more information, see Diagnostic Service Component and NVRAM
Service Component.

5 Simulate the containing model. The simulation exercises the AUTOSAR Dem and NvM service
calls in the component models. For a sample simulation, see example “Simulate AUTOSAR Basic
Software Services and Run-Time Environment” on page 7-36.

7 AUTOSAR Composition and ECU Software Simulation

7-34

See Also
Diagnostic Service Component | NVRAM Service Component

Related Examples
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36
• “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page 7-14
• “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18
• “Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28

More About
• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Model AUTOSAR Communication” on page 2-22

 Configure AUTOSAR Basic Software Service Implementations for Simulation

7-35

Simulate AUTOSAR Basic Software Services and Run-Time
Environment

Simulate AUTOSAR component calls to Basic Software memory and diagnostic services by using
reference implementations.

Configure Calls to AUTOSAR Basic Software Services

The AUTOSAR standard defines Basic Software (BSW) services that run in the AUTOSAR run-time
environment. The services include NVRAM Manager (NvM) Diagnostic Event Manager (Dem), and
Function Inhibition Manager (FiM) services. In the AUTOSAR run-time environment, AUTOSAR
software components typically access BSW services using client-server or sender-receiver
communication.

In your AUTOSAR software component model, to implement client calls to NvM, Dem, and FiM
service interfaces, you drag and drop preconfigured NvM, Dem, and FiM caller blocks. Each block
has prepopulated parameters, such as Client port name and Operation. You configure the block
parameters, for example, to select a service operation to call. To configure the added caller blocks in
the AUTOSAR software component, you synchronize the model. The software creates AUTOSAR
client-service interfaces, operations, and ports, and maps each Simulink function call to an AUTOSAR
client port and operation. For more information, see “Configure Calls to AUTOSAR NVRAM Manager
Service” on page 7-28, “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page 7-
14, and “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18.

Here is a throttle position integration model, which integrates two throttle position sensor
components and a throttle position monitor component. The sensor components take a raw throttle
position sensor (TPS) value and convert it to a TPS percent value. The monitor component takes the
TPS percent values provided by the primary and secondary sensor components and decides which
TPS signal to pass through. The sensor components call BSW NvM and Dem services, and the
monitor component calls BSW Dem services.

open_system('autosar_bsw_presim');

7 AUTOSAR Composition and ECU Software Simulation

7-36

Sensor components autosar_bsw_sensor1 and autosar_bsw_sensor2 each contain an Initialize
Function block, which calls the NvM service interface NvMService. The calls are implemented using
the Basic Software library block NvMServiceCaller. Each block is configured to call the NvMService
operation ReadBlock. The ReadBlock calls use client ports S1LowSetPoint and S2LowSetPoint.
Here is the Initialize Function block for autosar_bsw_sensor1.

Here is the NvMServiceCaller block dialog box for the ReadBlock call in the Initialize Function
block. For more information, see NvMServiceCaller.

 Simulate AUTOSAR Basic Software Services and Run-Time Environment

7-37

Sensor components autosar_bsw_sensor1 and autosar_bsw_sensor2 each contain two calls to
the Dem service interface DiagnosticMonitor. Both calls are implemented using the Basic
Software library block DiagnosticMonitorCaller. Each block is configured to call the
DiagnosticMonitor operation SetEventStatus. The SetEventStatus calls use client ports
S1StuckLow, S1StuckHigh, S2StuckLow, and S2StuckHigh.

7 AUTOSAR Composition and ECU Software Simulation

7-38

Here is the DiagnosticMonitorCaller block dialog box for the StuckLow call in the first sensor
component. For more information, see DiagnosticMonitorCaller.

 Simulate AUTOSAR Basic Software Services and Run-Time Environment

7-39

Monitor component autosar_bsw_monitor contains a call to the Dem service interface
DiagnosticMonitor and four calls to the Dem service interface DiagnosticInfo.

• As in the sensor component, a DiagnosticMonitorCaller block implements the
DiagnosticMonitor call, and it is configured to call the SetEventStatus operation. The client
port name is TPS.

• The four DiagnosticInfo calls are implemented using the Basic Software library block
DiagnosticInfoCaller. Each block is configured to call the DiagnosticInfo operation
GetEventFailed. The GetEventFailed calls use client ports TPS1StuckLow,
TPS1StuckHigh, TPS2StuckLow, and TPS2StuckHigh.

7 AUTOSAR Composition and ECU Software Simulation

7-40

Here is the DiagnosticinfoCaller block dialog box for the TPS1StuckLow call. For more
information, see DiagnosticInfoCaller.

 Simulate AUTOSAR Basic Software Services and Run-Time Environment

7-41

If you have Simulink Coder and Embedded Coder software, you can generate C code and export
ARXML descriptions for the NvM and Dem service calls. Open and build each component model. For
example, to build model autosar_bsw_monitor, open the model. Press Ctrl+B or enter the
MATLAB command slbuild('autosar_bsw_monitor').

To see the results of the model build, examine the code generation report.

Configure Reference Implementations of AUTOSAR Basic Software Services for Simulation

To simulate an AUTOSAR component model that calls BSW services, create a containing composition,
system, or harness model. In that containing model, provide reference implementations of the NvM,
Dem, and FiM service operations called by the component.

The AUTOSAR Basic Software block library includes an NVRAM Service Component block and a
Diagnostic Service Component block. The blocks provide reference implementations of NvM, Dem,
and FiM service operations. To support simulation of component calls to the NvM, Dem, and FiM
services, include the blocks in the containing model. You can insert the blocks in either of two ways:

• Automatically insert the blocks by creating a Simulink Test harness model
• Manually insert the blocks into a containing composition, system, or harness model

To automatically insert Service Component blocks for a model that calls BSW NvM, Dem, and FiM
services, open the model (or a containing model) and create a Simulink Test test harness (requires
Simulink Test). For more information, see “Create a Test Harness” (Simulink Test). Creating a test

7 AUTOSAR Composition and ECU Software Simulation

7-42

harness compiles the model, adds the Service Component blocks, and creates ports and other
elements required for simulation.

This example manually inserts Service Component blocks for NvM and Dem service calls. Open the
integration model autosar_bsw_presim. Using the Library Browser or add_block commands, or
by typing block names in the model window, add the NVRAM and Diagnostic Service Component
blocks to the model.

open_system('autosar_bsw_presim');
add_block('autosarlibnvm/NVRAM Service Component','autosar_bsw_presim/NVRAM Service Component');
add_block('autosarlibdem/Diagnostic Service Component','autosar_bsw_presim/Diagnostic Service Component');
set_param('autosar_bsw_presim','SimulationCommand','update');

The NVRAM Service Component block has prepopulated parameters, including run-time environment
(RTE) parameters and NVRAM Properties parameters. Examine the parameter settings and
consider if any require modifying, based on how you are using the NvM service operations. For more
information, see NVRAM Service Component.

 Simulate AUTOSAR Basic Software Services and Run-Time Environment

7-43

The RTE tab table lists component client ports and their mapping to NvM service block IDs. Each row
in the table represents a call into NvM services from a Basic Software caller block. Calls that act on
the same NvM block typically use the same block ID. This example maps the NvM ReadBlock client
ports to different block IDs.

7 AUTOSAR Composition and ECU Software Simulation

7-44

The Initial Values tab table lists component client ports and their initial values for simulation. The
default initial value is 0.

 Simulate AUTOSAR Basic Software Services and Run-Time Environment

7-45

The Diagnostic Service Component block has prepopulated parameters, including RTE parameters
and Dem Counter-Based Debouncing parameters. Examine the parameter settings and consider if
any require modifying, based on how you are using the Dem service operations.

The Counter-Based Debouncing parameters control the counter-based debounce algorithm
provided by the Dem service reference implementations. During multiple simulation runs, you can
tune event step size and threshold parameters and observe the effects. For more information, see
Diagnostic Service Component.

7 AUTOSAR Composition and ECU Software Simulation

7-46

The RTE tab table lists component client ports and their mapping to Dem or FiM service IDs (in this
example, event IDs). Each row in the table represents a call into Dem services from a Basic Software
caller block. Calls that act on the same event typically use the same event ID. This example maps the
Dem SetEventStatus client ports to different event IDs, and then maps the Dem GetEventFailed
client ports to event IDs that are shared with SetEventStatus ports. For example,
SetEventStatus port S1StuckHigh and GetFailedEvent port TPS1StuckHigh share event ID 1;
S1Stucklow and TPS1StuckLow share event ID 2; and so on.

 Simulate AUTOSAR Basic Software Services and Run-Time Environment

7-47

Simulate Calls to AUTOSAR NvM and Dem Services

After configuring NVRAM and Diagnostic Service Component blocks in the integration model,
simulate the model. The simulation exercises the AUTOSAR NvM and Dem service calls in the throttle
position sensor and monitor component models.

open_system('autosar_bsw_simulation');
simOutIntegration = sim('autosar_bsw_simulation');

Related Links

• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Configure Calls to AUTOSAR NVRAM Manager Service” on page 7-28
• “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page 7-14
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33

7 AUTOSAR Composition and ECU Software Simulation

7-48

Configure and Simulate AUTOSAR Function Inhibition Service
Calls

Simulate AUTOSAR component calls to Basic Software function inhibition and related services by
using reference implementations.

Configure Calls to AUTOSAR Basic Software Services

The AUTOSAR standard defines Basic Software (BSW) services that run in the AUTOSAR run-time
environment. The services include Diagnostic Event Manager (Dem), Function Inhibition Manager
(FiM), and NVRAM Manager (NvM) services. In the AUTOSAR run-time environment, AUTOSAR
software components typically access BSW services using client-server or sender-receiver
communication.

In your AUTOSAR software component model, to implement client calls to FiM and related Dem
service interfaces, you drag and drop preconfigured FiM and Dem caller blocks. Each block has
prepopulated parameters, such as Client port name and Operation. You configure the block
parameters, for example, to select a service operation to call. To configure the added caller blocks in
the AUTOSAR software component, you synchronize the model. The software creates AUTOSAR
client-service interfaces, operations, and ports, and maps each Simulink function call to an AUTOSAR
client port and operation. For more information, see “Configure Calls to AUTOSAR Function
Inhibition Manager Service” on page 7-18.

Here is a function inhibition integration model, which integrates two sensor components, a monitor
component, and an operation cycle component. The sensor components call BSW FiM and Dem (and
NvM) services, the monitor component calls BSW FiM and Dem services, and the operation cycle
component calls a BSW Dem service.

 Configure and Simulate AUTOSAR Function Inhibition Service Calls

7-49

The sensor and monitor components each call the FiM service interface FunctionInhibition. The
calls are implemented using the BSW library block Function Inhibition Caller. Each block instance is
configured to call the FunctionInhibition operation GetFunctionPermission.

The operation cycle component calls the Dem service interface OperationCycle. The call is
implemented using the BSW library block DiagnosticOperationCycleCaller. The block is configured to
call the OperationCycle operation SetOperationCycleState.

Configure Reference Implementations of AUTOSAR Basic Software Services for Simulation

To simulate an AUTOSAR component model that calls BSW services, create a containing composition,
system, or harness model. In that containing model, provide reference implementations of the Dem,
FiM, and NvM service operations called by the component.

The AUTOSAR Basic Software block library includes a Diagnostic Service Component block and an
NVRAM Service Component block. The blocks provide reference implementations of Dem, FiM, and
NvM service operations. To support simulation of component calls to the Dem, FiM, and NvM
services, include the blocks in the containing model. You can insert the blocks in either of two ways:

• Automatically insert the blocks by creating a Simulink Test harness model
• Manually insert the blocks into a containing composition, system, or harness model, and then

update the model

Here is the function inhibition integration model after manually inserting Diagnostic and NVRAM
Service Component blocks. To display function connections, on the Debug tab, select Information
Overlays > Function Connectors.

open_system('autosar_bsw_fim');

The Diagnostic Service Component block has prepopulated parameters, including RTE service ID
parameters, Dem Counter-Based Debouncing parameters, and FiM inhibition condition
parameters. The RTE tab lists component client ports and their mapping to Dem or FiM service IDs
for events, operation cycles, or functions with inhibition conditions. Each row in the table represents

7 AUTOSAR Composition and ECU Software Simulation

7-50

a call into Dem or FiM services from a Basic Software caller block, for which you can modify an ID
value.

The FIM tab lists function identifiers (FIDs) and their associated inhibition conditions and client
ports. The tab provides graphical controls for adding or removing inhibition conditions for a selected
FID. For each inhibition condition, select ID and mask values.

 Configure and Simulate AUTOSAR Function Inhibition Service Calls

7-51

For more information, see “Configure Calls to AUTOSAR Function Inhibition Manager Service” on
page 7-18.

Simulate Calls to AUTOSAR FiM and Dem Services

After configuring Diagnostic and NVRAM Service Component blocks in the integration model,
simulate the model. The simulation exercises the AUTOSAR FiM and Dem service calls in the sensor,
monitor, and operation cycle component models.

open_system('autosar_bsw_fim');
simOutIntegration = sim('autosar_bsw_fim');

Related Links

• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18
• “Configure AUTOSAR Basic Software Service Implementations for Simulation” on page 7-33

7 AUTOSAR Composition and ECU Software Simulation

7-52

Simulate and Verify AUTOSAR Component Behavior by Using
Diagnostic Fault Injection

This example shows how to simulate and verify the behavior of AUTOSAR components modeled in
Simulink® that contain calls into the AUTOSAR Diagnostic Event Manager (Dem). You can gain quick
testing coverage by overriding the diagnostic status of specific events or verify component recovery
by injecting transient event failures.

Override AUTOSAR Diagnostic Statuses to Gain Coverage

Component models often call into the AUTOSAR Diagnostic Event Manager (Dem) to communicate
localized errors to the rest of the system. They may also query the diagnostic status of other systems
by making calls to getEventStatus.

To show how to simulate and verify behavior by overriding the status of events, an example throttle
position monitor component is shown. This component contains four calls to the Diagnostic Event
Manager to query if four specific events have failed on their last evaluation. The status of these
events determines if the primary and seconday sensor inputs can be passed on to the rest of the
system. If both sensors report event failures, then a default value is passed on as the sensor input and
a setEventStatus call reports a general failure to the system.

 Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection

7-53

To verify that this component works as designed, a test harness model capable of exercising the
branches of the model is shown below. In the test harness, the values 1 and 2 distinguish the two
sensor inputs and a Diagnostic Service Component block provides simulation for calls to
GetEventFailed and SetEventStatus. The Dem Status Override blocks are then added to override the
Test Failed bit of the UDS status byte for each event.

open_system('autosar_bsw_override_test');

7 AUTOSAR Composition and ECU Software Simulation

7-54

To get a more visual understanding of the test conditions and coverage for the example component in
the test harness, from the Apps gallery, you can use the Coverage Analyzer app.

The view below shows the test coverage of the component model when the Dem Status Override
blocks are removed. Given that the GetEventFailed calls returns false without external input, you are
not able to achieve full decision coverage on the Switch blocks in the component.

 Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection

7-55

When Dem Status Override blocks are used in the harness, you are able to obtain full coverage of the
component.

7 AUTOSAR Composition and ECU Software Simulation

7-56

This example has shown how to obtain testing coverage by using the Dem Status Override block.
While this specific example was narrow in scope, and it focused on the Test Failed bit, you can use the
Dem Status Override block to configure each bit of the Unified Diagnostic Service (UDS) status byte
to create any combination.

 Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection

7-57

In general, you can use the Dem Status Override block to manually override the bits of the UDS
status byte or have bits simulate independently. If you select Dialog and configure a bit, you
override the status of that bit. Status bits are robust against changes with setEventStatus calls and
the effects of event availability and operation cycle changes. Additionally, downstream services such
as Function Inhibition (FiM) respond accordingly to the overridden status. If you select Input port,

7 AUTOSAR Composition and ECU Software Simulation

7-58

you allow certain status bits to update based on a connnected input signal, where values greater than
zero turn the bit on. This functionality enables a component to override certains bits of a status while
allowing others to continue to simulate independently.

Inject Transient Events to Verify Component Recovery

In AUTOSAR there are often component managing systems that are also responsible for monitoring
their own status. In such systems, it is useful to be able to test if such a component can recover from
faults to the point that it can again report success. For this type of testing, the Dem Status Override
block used in the preceding example is not suitable beause it prevents the tested component from
reporting a successful status again. Instead, a Dem Status Inject block can be used to create this type
of test condition.

To show how to inject a transient event to verify component recovery, an example component for a
regenerative parrticulate filter is shown. In this component, the state of the filter is stored in the
state of a Delay block. During simulation, the filter incrementally increases within a nominal range of
20-80% utilization. This usage is monitored and reported to the diagnostic services. A representative
regeneration mode is also shown. When regeneration is enabled the filter utilization quickly drops.

Within this component, the diagnostic services Test Failed bit is also queried. When a rising edge
is detected, indicating that the filter has reached its threshold utilization, the component enters a
regenration cycle by setting the isRegenerating Data Store to true.

 Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection

7-59

To verify the self recovery of this component, the test harness model shown was created. Specifically,
you want to verify that the filter stays within the nominal range of utilization and that it enters and
exits regeneration cycles correctly when diagnostic events occur. When the component simulates, it is
expected to perpetually alternate between regeneration and nominal usage cycles by firing its own
diagnostic events as required. You also want to test that the component can trigger a regeneration
cycle if it receives a diagnostic event from the run-time environment (RTE).

The test harness shows the component filter utilization with the gauge shown its dashboard. The
Diagnostic Service Component block provides simulation for the calls to the Diagnostic Event
Manager. When the harness simulates the component model, the gauge shows the filter gradually
increase to 80% and then quickly lower to 20% as the filter is regenerated before repeating the cycle.

To verify that regeneration can be triggered from a diagnostic event provided by the RTE, you can
use a Dem Status Inject block. The block has been specified to use EventId 1, which matches the
client ports in the component defined in the Diagnsotic Service Component. The fault type has been
set to Event Fail to set the Test Failed bit to true when the event is injected. In the test
harness model, the failure injection can be triggered by using the dashboard button. Alternatively,
you could have provided this failure through an input signal source for an automated test
configuration. The test harness can simulate the component to show its response to the fault
injection. You can see when a fault is injected by using the dashboard button because you can see the
gauge drop even if it has not reached the upper threshold to show that the component model has
entered a regeneration cycle. This example model is configured to run indefinitely, so you must click
Stop to end the simulation.

open_system('autosar_bsw_inject_test');

7 AUTOSAR Composition and ECU Software Simulation

7-60

This example has shown how to test component recovery by using the Dem Status Inject block. While
this specific example was narrow in scope, and it focused on the Test Failed bit, you can use the Dem
Status Inject block to configure each bit of the Unified Diagnostic Service (UDS) status byte to create
any combination.

 Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection

7-61

In general, you can use the Dem Status Inject block to manually override the bits of the UDS status
byte. This block then simulates and updates its status with other blocks in the model to show

7 AUTOSAR Composition and ECU Software Simulation

7-62

recovery. Downstream services such as Function Inhibition (FiM) respond accordingly to this status
throughout simulation.

See Also
Dem Status Inject | Dem Status Override

Related Examples
• “Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36
• “Configure Calls to AUTOSAR Diagnostic Event Manager Service” on page 7-14
• “Configure Calls to AUTOSAR Function Inhibition Manager Service” on page 7-18

More About
• “Model AUTOSAR Basic Software Service Calls” on page 7-12

 Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection

7-63

AUTOSAR Software Architecture
Modeling

• “Create AUTOSAR Architecture Models” on page 8-2
• “Add and Connect AUTOSAR Compositions and Components” on page 8-4
• “Import AUTOSAR Composition from ARXML” on page 8-10
• “Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis” on page 8-14
• “Link AUTOSAR Components to Simulink Requirements” on page 8-19
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21
• “Configure AUTOSAR Scheduling and Simulation” on page 8-31
• “Generate and Package AUTOSAR Composition XML Descriptions and Component Code”

on page 8-36
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Import AUTOSAR Composition into Architecture Model” on page 8-55
• “Configure AUTOSAR Architecture Model Programmatically” on page 8-59
• “Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models” on page 8-62

8

Create AUTOSAR Architecture Models
An AUTOSAR architecture model provides resources and a canvas for developing AUTOSAR
composition and component models for the Classic Platform (requires System Composer). From the
architecture model, you can:

• Add and connect AUTOSAR compositions and components.
• View component or composition dependencies.
• Link components to requirements (requires Requirements Toolbox™).
• Add Simulink behavior to components by creating or linking models.
• Configure scheduling and simulation.
• Export composition and component ARXML descriptions and generate component code (requires

Embedded Coder).

Architecture models provide an end-to-end AUTOSAR software design workflow. In Simulink, you can
author a high-level application design, implement behavior for application components, add Basic
Software (BSW) service calls and service implementations, and simulate the application.

To create an architecture model, open an AUTOSAR Blockset model template from the Simulink Start
Page. For example:

1 Open the Simulink Start Page. Enter the MATLAB simulink command or select Simulink menu
sequences that create a new model.

2 On the New tab, scroll down to AUTOSAR Blockset and expand the list of model templates. Place
your cursor over the Software Architecture template and click Create Model.

A new AUTOSAR architecture model opens.
3 Explore the controls and content in the software architecture canvas.

• In the Simulink Toolstrip, the Modeling tab supports common tasks for architecture
modeling.

• To the left of the model window, the palette includes icons for adding different types of
AUTOSAR components to the model: Software Component, Software Composition, and for
Basic Software (BSW) modeling, Diagnostic Service Component and NVRAM Service
Component.

• The composition editor provides a view of AUTOSAR software architecture based on the
AUTOSAR Virtual Function Bus (VFB). The model canvas initially is empty.

8 AUTOSAR Software Architecture Modeling

8-2

After you create an AUTOSAR architecture model, develop the top level of the design. See “Add and
Connect AUTOSAR Compositions and Components” on page 8-4.

See Also
Software Component | Software Composition | Diagnostic Service Component | NVRAM Service
Component

Related Examples
• “Add and Connect AUTOSAR Compositions and Components” on page 8-4
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Configure AUTOSAR Architecture Model Programmatically” on page 8-59

 Create AUTOSAR Architecture Models

8-3

Add and Connect AUTOSAR Compositions and Components
After you create an AUTOSAR architecture model, develop the top-level AUTOSAR software design.
The composition editor provides a view of AUTOSAR software architecture based on the AUTOSAR
Virtual Function Bus (VFB).

Starting at the top level of the architecture model, use the composition editor and the Simulink
Toolstrip Modeling tab to add and connect AUTOSAR software compositions and components.

Alternatively, you can import a software composition from ARXML files. See “Import AUTOSAR
Composition from ARXML” on page 8-10.

In this section...
“Add and Connect Component Blocks” on page 8-4
“Add and Connect Composition Blocks” on page 8-6

Add and Connect Component Blocks
To add and connect AUTOSAR software components in an architecture model:

• For each component required by the design, from the Modeling tab or the palette, add a Software
Component block. You can use the Property Inspector to set the component Kind —
Application, ComplexDeviceDriver, EcuAbstraction, SensorActuator, or
ServiceProxy.

• Add component require and provide ports. To add each component port, click an edge of a
Software Component block. When port controls appear, select Input for a require port or Output
for a provide port.

• To connect the Software Component blocks to other blocks, connect the block ports with signal
lines.

• To connect the Software Component blocks to architecture or composition model root ports, drag
from the component ports to the containing model boundary.

When you release the connection, a root port is created at the boundary.

8 AUTOSAR Software Architecture Modeling

8-4

• Configure additional AUTOSAR properties by using the Property Inspector.

For example, to author a simple design:

1 Using the Simulink Start Page, create an AUTOSAR architecture model. (For more information,
see “Create AUTOSAR Architecture Models” on page 8-2.) The model canvas initially is empty.

2 From the Modeling tab or the palette, add two Software Component blocks. Place them next to
each other, left and right.

a For each block, use the Property Inspector to set the component Kind — SensorActuator
for the left block and Application for the right block.

b Add a provide (output) port to the left component block and a require (input) port to the
right component block. Connect the two ports.

c Add a require (input) port to the left component block and a provide (output) port to the
right component block.

3 Connect the new require and provide ports to architecture model root ports. Drag from each port
to the model boundary.

 Add and Connect AUTOSAR Compositions and Components

8-5

The simple design is complete, but behavior is not yet defined for the AUTOSAR components. The
next step is to add Simulink behavior to the AUTOSAR components by creating, importing, or linking
models. See “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21.
For a more detailed design example, see “Author AUTOSAR Compositions and Components in
Architecture Model” on page 8-42.

If you have Requirements Toolbox software, you can link components in an AUTOSAR architecture
model to Simulink requirements. See “Link AUTOSAR Components to Simulink Requirements” on
page 8-19.

Add and Connect Composition Blocks
To add and connect an AUTOSAR software composition nested in an architecture model:

• From the Modeling tab or the palette, add a Software Composition block.
• Add composition require and provide ports. To add each composition port, click an edge of the

Software Composition block. When port controls appear, select Input for a require port or Output
for a provide port.

Alternatively, open the Software Composition block. To add each composition port, click the
boundary of the composition diagram. When port controls appear, select Input for a require port
or Output for a provide port.

8 AUTOSAR Software Architecture Modeling

8-6

• To connect the Software Composition block to other blocks, connect the block ports with signal
lines.

• To connect the Software Composition block to architecture or composition model root ports, drag
from the composition ports to the containing model boundary.

When you release the connection, a root port is created at the boundary.

• Configure additional AUTOSAR properties by using the Property Inspector.

For example, to author a simple nested composition:

1 Using the Simulink Start Page, create an AUTOSAR architecture model. (For more information,
see “Create AUTOSAR Architecture Models” on page 8-2.) The model canvas initially is empty.

2 From the Modeling tab or the palette, add a Software Composition block and a Software
Component block. Place them next to each other, left and right.

a Add a provide (output) port to the left composition block and a require (input) port to the
right component block. Connect the two ports.

b Add a require (input) port to the left composition block and a provide (output) port to the
right component block.

 Add and Connect AUTOSAR Compositions and Components

8-7

3 Connect the unconnected require and provide ports to architecture model root ports. Drag from
each port to the model boundary.

Typically, an AUTOSAR composition contains a set of AUTOSAR components and compositions with a
shared purpose. To populate a composition, open the Software Composition block and begin adding
more Software Component and Software Composition blocks. For a more detailed design example,
see “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42.

See Also
Software Component | Software Composition

8 AUTOSAR Software Architecture Modeling

8-8

Related Examples
• “Import AUTOSAR Composition from ARXML” on page 8-10
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21
• “Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis” on page 8-14
• “Link AUTOSAR Components to Simulink Requirements” on page 8-19
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Configure AUTOSAR Architecture Model Programmatically” on page 8-59

 Add and Connect AUTOSAR Compositions and Components

8-9

Import AUTOSAR Composition from ARXML
After you create an AUTOSAR architecture model, develop the top-level AUTOSAR software design.
The composition editor provides a view of AUTOSAR software architecture based on the AUTOSAR
Virtual Function Bus (VFB).

Starting at the top level of the architecture model, use the composition editor and the Simulink
Toolstrip Modeling tab to add and connect AUTOSAR software compositions and components. See
“Add and Connect AUTOSAR Compositions and Components” on page 8-4.

If you have an ARXML description of an AUTOSAR software composition, you can import the
composition into an AUTOSAR architecture model. The import creates a Simulink representation of
the composition at the top level of the architecture model.

Composition import requires an open AUTOSAR architecture model with no functional content. To
import a composition, open the AUTOSAR Importer app or call the architecture function
importFromARXML.

In this section...
“Import AUTOSAR Composition By Using AUTOSAR Importer App” on page 8-10
“Import AUTOSAR Composition By Calling importFromARXML” on page 8-12

Import AUTOSAR Composition By Using AUTOSAR Importer App

To import an AUTOSAR software composition from ARXML files into an architecture model:

1 Create or open an AUTOSAR architecture model that has no functional content. For example,
enter this MATLAB command:
archModel = autosar.arch.createModel("myArchModel");

2 In the open architecture model, on the Modeling tab, select Import from ARXML.
3 In the AUTOSAR Importer app, in the Select ARXML pane, in the ARXML Files field, enter the

names of one or more ARXML files (comma separated) that describe an AUTOSAR software
composition.

For this example, enter ThrottlePositionControlComposition.arxml. The ARXML file is
located at matlabroot/examples/autosarblockset/data, which is on the default MATLAB
search path.

8 AUTOSAR Software Architecture Modeling

8-10

Click Next. The app parses the specified ARXML file.
4 In the Create Composition pane, the Composition name menu lists the compositions found in

the parsed ARXML file. Select the composition /Company/Components/
ThrottlePositionControlComposition.

Optionally, to view additional modeling options for composition creation, select Configure
Modeling Options.

You can specify:

• Whether to include or exclude AUTOSAR software components, which define composition
behavior. By default, the import includes components within the composition.

• Simulink data dictionary in which to place data objects for imported AUTOSAR data types.
• Names of existing Simulink behavior models to link to imported AUTOSAR software

components.
• Component options to apply when creating Simulink behavior models for imported AUTOSAR

software components. For example, how to model periodic runnables, or a
PredefinedVariant or SwSystemconstantValueSets with which to resolve component
variation points.

For more information about modeling options and behavior, see importFromARXML.
5 To finish importing the composition into the architecture model, click Finish. The Diagnostic

Viewer displays the progress of the composition creation.

On completion, the imported composition appears in the software architecture canvas.

 Import AUTOSAR Composition from ARXML

8-11

Because this composition import was configured to include AUTOSAR software components
(modeling option Exclude internal behavior from import was cleared), the import created
Simulink models for each component in the composition.

Next you develop each component in the composition. For each component model, you refine the
AUTOSAR configuration and create algorithmic model content. For an example of developing
component algorithms, see “Design and Simulate AUTOSAR Components and Generate Code” on
page 4-77, section "Develop AUTOSAR Component Algorithms".

Import AUTOSAR Composition By Calling importFromARXML
To programmatically import an AUTOSAR software composition from ARXML files into an
architecture model, call the importFromARXML function. This example:

1 Creates AUTOSAR architecture model myArchModel.
2 Imports software composition /Company/Components/

ThrottlePositionControlComposition from AUTOSAR example file
ThrottlePositionControlComposition.arxml into the architecture model.

The ARXML file is located at matlabroot/examples/autosarblockset/data, which is on the
default MATLAB search path.
% Create AUTOSAR architecture model
modelName = "myArchModel";
archModel = autosar.arch.createModel(modelName);

% Import composition from file ThrottlePositionControlComposition.arxml
importerObj = arxml.importer("ThrottlePositionControlComposition.arxml"); % Parse ARXML
importFromARXML(archModel,importerObj,...
 "/Company/Components/ThrottlePositionControlComposition");

Creating model 'ThrottlePositionSensor' for component 1 of 5:
 /Company/Components/ThrottlePositionSensor
Creating model 'ThrottlePositionMonitor' for component 2 of 5:
 /Company/Components/ThrottlePositionMonitor
Creating model 'Controller' for component 3 of 5:
 /Company/Components/Controller
Creating model 'AccelerationPedalPositionSensor' for component 4 of 5:
 /Company/Components/AccelerationPedalPositionSensor
Creating model 'ThrottlePositionActuator' for component 5 of 5:
 /Company/Components/ThrottlePositionActuator
Importing composition 1 of 1:
 /Company/Components/ThrottlePositionControlComposition

For more information about import options and behavior, see the importFromARXML reference page.

8 AUTOSAR Software Architecture Modeling

8-12

See Also
importFromARXML

Related Examples
• “Import AUTOSAR Composition into Architecture Model” on page 8-55
• “Add and Connect AUTOSAR Compositions and Components” on page 8-4
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21
• “Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis” on page 8-14
• “Link AUTOSAR Components to Simulink Requirements” on page 8-19
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Configure AUTOSAR Architecture Model Programmatically” on page 8-59

 Import AUTOSAR Composition from ARXML

8-13

Create Profiles Stereotypes and Views for AUTOSAR
Architecture Analysis

AUTOSAR architectures can be large and complex. Often development work is distributed, with
different engineers working on different structural or functional parts of an architecture model. To
help analyze structural or functional aspects of an architecture model, you can create filtered views
of the model hierarchy.

• A spotlight view displays the upstream and downstream dependencies of a selected architecture
component or composition.

• A custom view displays a subset of components from the architecture model, based on filtering
conditions that you specify. You can filter model elements for operational, functional, or physical
analysis.

Filtering an AUTOSAR architecture model for specific attributes and saving the filtered view with the
model can help engineers focus and collaborate on their parts of the architecture.

In this section...
“Create Profiles and Stereotypes” on page 8-14
“View Component or Composition Dependencies” on page 8-14
“Create Custom Views for Analysis” on page 8-16

Create Profiles and Stereotypes
You can use stereotypes to capture nonfunctional properties of elements in an AUTOSAR architecture
model. To capture these properties, create a profile containing stereotype definitions and apply these
stereotypes on the modeling elements. Define new profiles and stereotypes using the Profile Editor.

For example, in an AUTOSAR architecture model, you may want to define a custom stereotype for all
sensor components in your model.

Once you have defined profiles and stereotypes for your architecture model, you can create custom
views that display a subset of the stereotypes in the model and perform additional analysis by
quantitatively evaluating the architecture for certain characteristics. For more information, see
“Define Stereotypes and Perform Analysis” (System Composer) and “Use Stereotypes and Profiles”
(System Composer).

View Component or Composition Dependencies
In an AUTOSAR architecture model, to help analyze component or composition dependencies, you
can create a spotlight view. A spotlight view is a simplified view of an architecture component or
composition that captures its upstream and downstream dependencies.

To create a spotlight view, open an architecture model and select a component or composition. On the
Modeling tab, select Architecture Views > Spotlight.

The spotlight view displays the model elements to which the component or composition connects in a
hierarchy. You cannot edit the spotlight diagram layout. This figure shows a spotlight view of
component Monitor in AUTOSAR example model autosar_tpc_composition. (To open the

8 AUTOSAR Software Architecture Modeling

8-14

example model in a local working folder, use the command
openExample('autosar_tpc_composition').)

While in the spotlight view, you can move the spotlight focus to another component or composition.
Select another component or composition, place your cursor over the displayed ellipsis, and select
model cue Create Spotlight from Component.

To keep a spotlight view visible during model development, you can create the view in a separate
model window. To create a separate model window, select a component or composition, right-click the

 Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis

8-15

selected block to open its context menu, and select Open in New Window. In the new window,
create a spotlight view.

Updating the architecture model diagram with changes refreshes open spotlight views.

To return from a spotlight view to the architecture model view, click the Spotlight close icon or
select a component or composition and select model cue Show in Composition.

Simulink does not save spotlight views with the architecture model.

Create Custom Views for Analysis
To help analyze structural and functional aspects of an AUTOSAR architecture model, you can create
a custom view. Based on filtering conditions that you specify, a custom view shows a subset of
components from the architecture model. You can filter model elements for operational, functional, or
physical analysis. To create a custom view, open the Architecture Views Gallery. In an open
architecture model, on the Modeling tab, select Architecture Views.

As an example, suppose you want to create a view for the architecture model
autosar_tpc_composition to show components that handle throttle position sensor (TPS) signals.
The following workflow shows how to create this custom view:

1 Open the example model in a local working folder by using the command
openExample('autosar_tpc_composition').

2 Open the Architecture Views gallery. On the Modeling tab, select Architecture Views.
3 Create a view. In the gallery view, click New > View. To name the view, in the View Properties

pane, enter the name TPS Ports View.
4 Configure the view. Use the Filter tab to specify the constraints for the view.

a Specify the components. For the custom view, specify the components in the architecture
model you would like to include in the custom view. There are several ways to specify the
components, the options include Add Component Filter, Select All Components, Add
Custom Component Filter, and Clear All Component Filters.

For this example, select Select All Components to bring all of the components from the
example model into the view.

b Specify the ports. For your custom view, specify the ports in the architecture model that you
would like to include in the custom view. There are several ways to specify the ports, the
options include Add Port Filter, Exclude All Ports, Hide unconnected ports,
Hide connectors, Add Custom Port Filter, and Clear All Port Filters.

For this example, select Add Port Filter to filter the ports in the architecture model.
Configure the filter so that it selects ports where the name contains TPS. When the filter is
applied the custom view will show the components that contain the throttle position sensor
(TPS).

8 AUTOSAR Software Architecture Modeling

8-16

5 Apply the view. To display the updated TPS Ports View, click Apply.

 Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis

8-17

When you save the architecture model, the view is saved in the Architecture Views Gallery. Other
users can then access and share the view. For more information, see “Create Architecture Views
Interactively” (System Composer).

See Also

Related Examples
• “Create Spotlight Views” (System Composer)
• “Create Architecture Views Interactively” (System Composer)
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21
• “Link AUTOSAR Components to Simulink Requirements” on page 8-19
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42

8 AUTOSAR Software Architecture Modeling

8-18

Link AUTOSAR Components to Simulink Requirements
If you have Requirements Toolbox software, you can link components in an AUTOSAR architecture
model to Simulink requirements. By linking model elements that implement requirements to the
associated requirements, you can track implementation of the requirements. If a requirement or an
implementation changes, you can make adjustments to keep them in sync.

To link a component to a requirement:

1 Open an architecture model, such as example model autosar_tpc_composition. (To open the
model in a local working folder, use openExample('autosar_tpc_composition').)

2 In the Apps tab, click Requirements Manager. In the model window, the Requirements tab
opens, with the Requirements Browser docked at the bottom.

3 Create or open a requirements set. If you opened example model autosar_tpc_composition,
you can use the example requirements file TPC_Requirements.slreqx, which is on the default
MATLAB search path. If you need to copy the requirements file to your working folder, enter this
MATLAB command:
copyfile(fullfile(matlabroot,'examples/autosarblockset/data/TPC_Requirements.slreqx'),'.')

In the Requirements Browser, open the requirements file. The requirements set contains
requirements for four components in the model.

4 To link a requirement to an AUTOSAR component, drag the requirement from the Requirements
Browser to the component block. For example, drag requirement 4 to the Actuator component
block.

 Link AUTOSAR Components to Simulink Requirements

8-19

For more information, see “Link Blocks and Requirements” (Requirements Toolbox) and “Author
Requirements in MATLAB or Simulink” (Requirements Toolbox).

See Also

Related Examples
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21
• “Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis” on page 8-14
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42

More About
• “Author Requirements in MATLAB or Simulink” (Requirements Toolbox)
• “Link Blocks and Requirements” (Requirements Toolbox)

8 AUTOSAR Software Architecture Modeling

8-20

Define AUTOSAR Component Behavior by Creating or Linking
Models

After you add and connect Software Component and Software Composition blocks in an AUTOSAR
architecture model, add Simulink behavior to the components. For each AUTOSAR Software
Component block, you can:

• Create a model based on the block interface.
• Link to an implementation model.
• Create a model from an AUTOSAR XML (ARXML) component description.

To initiate these actions, select a Software Component block, place your cursor over the displayed
ellipsis, and select a component model cue — Create Model, Link to Model, or Create Component
Model from ARXML.

The selections open dialog boxes that help you create or link a model that defines the Simulink
behavior of the component.

The creation and linking actions can be initiated in other ways, for example, from an architecture
block context menu or from the toolstrip Modeling tab.

After you associate an implementation model with an AUTOSAR component, if you have Embedded
Coder software, you can use component block cues or right-click options to generate code and export
ARXML files. The ARXML export uses the XML options of the parent architecture model.

When the components in an architecture model have defined behavior, you can simulate the behavior
of the aggregated components. See “Configure AUTOSAR Scheduling and Simulation” on page 8-31.

In this section...
“Create Model Based on Block Interface” on page 8-21
“Link to Implementation Model” on page 8-23
“Create Model from ARXML Component Description” on page 8-26

Create Model Based on Block Interface
To create a stub implementation model and map it to an AUTOSAR software component, use the
Software Component block cue Create Model.

 Define AUTOSAR Component Behavior by Creating or Linking Models

8-21

Clicking the cue creates a model based on the interface of the authored component. Ports that you
created on the Software Component block are present in the implementation model.

1 Create or open an architecture model. To create a model, open the Simulink Start Page. Under
AUTOSAR Blockset, open the Software Architecture template.

2 From the Modeling tab or the palette, add a Software Component block to the model and name
it Controller. The Property Inspector displays the component Kind property as Application,
which is correct for this component.

3 Click the block edges to add require (input) ports named APP_Percent and TPS_Percent and a
provide (output) port named ThrCmd_Percent. (For a controller component with the same
naming, see the example “Author AUTOSAR Compositions and Components in Architecture
Model” on page 8-42.)

4 Select the Controller block, place your cursor over the displayed ellipsis, and select cue
Create Model. A model creation dialog box opens.

a Enter a name for the new model or accept the block name default.
b Select a custom Simulink template for the new model or accept the default, a blank

template. For more information about creating your own Simulink templates, see “Create
Template from Model”.

To create a stub implementation model and map it to the AUTOSAR Controller component,
click OK.

8 AUTOSAR Software Architecture Modeling

8-22

5 Model Controller.slx is created in the working folder. To view the initial model content, open
the Controller block. The ports are stubbed with Ground and Terminator blocks so that the
model can immediately be updated and simulated.

6 In the open Controller model, to view the model mapping and dictionary, open the AUTOSAR
Component Designer app. This view shows the mapping and properties of the model port
APP_Percent.Value. The model port maps to AUTOSAR component port APP_Percent.

To view and modify additional AUTOSAR properties for the currently-selected element, click the

 icon.
7 After creating the stub model representation of the AUTOSAR component, use Simulink tools to

develop the component implementation. You refine the AUTOSAR configuration and create
algorithmic model content. For an example Controller block implementation, see the model
autosar_tpc_controller provided with example “Author AUTOSAR Compositions and
Components in Architecture Model” on page 8-42.

Link to Implementation Model

To reference an existing Simulink implementation model from an AUTOSAR software component, use
the Software Component block cue Link to Model. Clicking the cue initiates linking of the

 Define AUTOSAR Component Behavior by Creating or Linking Models

8-23

component block to an implementation model that you specify. By linking to existing models, you can
deploy verified implementation models in your AUTOSAR design without requalification.

The implementation model must meet model linking requirements. The model must:

• Use the same AUTOSAR target as the architecture model.
• Have a complete mapping of Simulink model elements to AUTOSAR component elements.
• Implement root-level ports with In Bus Element and Out Bus Element blocks instead of Inport and

Outport blocks.
• Use a fixed-step solver.
• Map to an AUTOSAR software component that is not already mapped to a different model in the

composition hierarchy.

If the specified implementation model meets the linking requirements, the software links the
component block to the model and updates the block and model interfaces to match.

If the implementation model does not meet one or more of the linking requirements, the software
opens the AUTOSAR Model Linker app, which offers fixes for the unmet requirements. For example, if
an implementation model uses root Inport and Outport blocks, the app offers to fix the issue by
converting the signal ports to bus ports. When you click Fix All, the software fixes the unmet
requirements and finishes linking the component block to the model.

To link an AUTOSAR software component to an existing Simulink implementation model:

1 Create or open an architecture model. To create a model, open the Simulink Start Page. Under
AUTOSAR Blockset, open the Software Architecture template.

2 From the Modeling tab or the palette, add a Software Component block to the model. The
Property Inspector displays the component Kind property as Application, which is correct for
this component.

8 AUTOSAR Software Architecture Modeling

8-24

3 Link the Component block to an implementation model that is not already configured for
architecture model use. For example, select a model that is not configured for AUTOSAR or uses
signal ports instead of bus ports at the root level. This example uses the swc model from the
AUTOSAR examples folder. To copy the swc model file to your working folder, enter this MATLAB
command:
copyfile(fullfile(matlabroot,'examples/autosarblockset/main/swc.slx'),'.')

4 Select the Component block, place your cursor over the displayed ellipsis, and select cue Link to
Model. In the Link to Model dialog box, browse to the implementation model swc.

To reference the implementation model from the AUTOSAR Component component, click OK.
5 If the specified implementation model does not meet one or more of the linking requirements, the

software opens the AUTOSAR Model Linker app, which offers fixes for the unmet requirements.
Here is the view that opens for swc.

If the Linking Requirements pane displays a Fix All button, you are ready to fix the unmet
linking requirements and link the component block to the implementation model. Click Fix All.

 Define AUTOSAR Component Behavior by Creating or Linking Models

8-25

If the implementation model does not have a complete AUTOSAR component mapping, as in this
example, you must map the model before linking. Click Next and work through mapping panes
Set Component and Set Interfaces. For more information, see “Create AUTOSAR Software
Component in Simulink” on page 3-2. When you complete the Set Interfaces pane, click Fix All.

6 Simulink links the Component block to model swc and updates the block interface to match the
model implementation.

7 To view the model content, open the Component block. In the open Component model, to view
the model mapping and dictionary, open the AUTOSAR Component Designer app.

8 After linking the AUTOSAR component to the implementation model, you can connect the
component block to other blocks or root ports in the design.

Create Model from ARXML Component Description
To create an AUTOSAR implementation model from an ARXML component description and map it to
an AUTOSAR software component, use the Software Component block cue Create Component
Model from ARXML.

Clicking the cue creates a model based on a specified ARXML description, links the component block
to the model, and updates the block and model interfaces to match.

1 Create or open an architecture model. To create a model, open the Simulink Start Page. Under
AUTOSAR Blockset, open the Software Architecture template.

2 From the Modeling tab or the palette, add a Software Component block to the model and name
it Controller. The Property Inspector displays the component Kind property as Application,
which is correct for this component.

8 AUTOSAR Software Architecture Modeling

8-26

3 The example “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13 provides an
ARXML file that includes a controller component description. The ARXML file is on the default
MATLAB search path. If you need to copy the ARXML file to your working folder, enter this
MATLAB command:
copyfile(fullfile(matlabroot,...
 'examples/autosarblockset/data/ThrottlePositionControlComposition.arxml'),'.')

4 Select the Controller block, place your cursor over the displayed ellipsis, and select cue
Create Component Model from ARXML. The AUTOSAR Importer App opens.

Work through the import and model creation procedure.
5 In the Select ARXML pane, browse to one or more AUTOSAR XML files that provide one or

more software component descriptions. This example uses a file copied in an earlier step,
ThrottlePositionControlComposition.arxml. To import the description, click Next.

 Define AUTOSAR Component Behavior by Creating or Linking Models

8-27

6 In the Create Component pane, select the software component from which to create a model.
From the list of components imported in the previous step, this example selects Controller.

8 AUTOSAR Software Architecture Modeling

8-28

To view optional settings for model creation, select Configure Modeling Options.

You can:

• Model periodic runnables as atomic subsystems or function-call subsystems, or accept a
default modeling style selection (Auto).

• Select an existing AUTOSAR runnable as the initialization runnable for the component. In this
example, Controller_Init is available for selection.

• Specify a Simulink data dictionary into which to import data objects corresponding to
AUTOSAR data types in the XML file. If the specified dictionary does not already exist, the
importer creates it. The model is then associated with the data dictionary.

 Define AUTOSAR Component Behavior by Creating or Linking Models

8-29

• Select an AUTOSAR PredefinedVariant defined in the AUTOSAR XML file to initialize
SwSystemconst data that serves as input to control variation points. For more information,
see “Control AUTOSAR Variants with Predefined Value Combinations” on page 4-227. In this
example, no PredefinedVariant is available for selection.

For more information about model creation options and behavior, see
createComponentAsModel.

7 To create the model and map it to the AUTOSAR Controller component, click Finish. Simulink
creates model Controller.slx in the working folder and updates the block interface to match
the model implementation.

8 To view the model content, open the Controller block. In the open Controller model, to view
the model mapping and dictionary, open the AUTOSAR Component Designer app.

9 After creating the AUTOSAR implementation model and linking the AUTOSAR component to it,
connect the component block to other blocks or root ports in the design. For a fully connected
controller component, see example “Author AUTOSAR Compositions and Components in
Architecture Model” on page 8-42.

See Also
Software Component | createComponentAsModel

Related Examples
• “Configure AUTOSAR Scheduling and Simulation” on page 8-31
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Configure AUTOSAR Ports By Using Simulink Bus Ports” on page 4-137
• “Import AUTOSAR XML Descriptions Into Simulink” on page 3-13
• “Control AUTOSAR Variants with Predefined Value Combinations” on page 4-227
• “Configure AUTOSAR Architecture Model Programmatically” on page 8-59

8 AUTOSAR Software Architecture Modeling

8-30

Configure AUTOSAR Scheduling and Simulation
To configure scheduling and simulation for an AUTOSAR architecture model, you can:

• Add Basic Software (BSW) blocks to simulate calls to BSW services.
• Create a test harness model to connect inputs and plant elements to the architecture model.
• Use the Schedule Editor to schedule and specify the execution order of component runnables.

To simulate the behavior of the aggregated components in an open architecture model, click Run.

In this section...
“Simulate Basic Software Service Calls” on page 8-31
“Connect a Test Harness” on page 8-31
“Schedule Component Runnables” on page 8-33

Simulate Basic Software Service Calls
For the AUTOSAR Classic Platform, AUTOSAR Blockset provides Basic Software (BSW) blocks, which
allow you to model software component calls to BSW services that run in the AUTOSAR run-time
environment. BSW services include NVRAM Manager (NvM), Diagnostic Event Manager (Dem), and
Function Inhibition Manager (FiM). In the run-time environment, AUTOSAR software components
typically access BSW services using client-server or sender-receiver communication.

To simulate AUTOSAR components that call BSW services, you create a containing architecture,
composition, or test harness model and add preconfigured BSW service component blocks. The blocks
provide reference implementations of BSW service operations.

If the components in your architecture model use BSW caller blocks, make sure that the architecture
model contains BSW service implementations. For more information, see “Model AUTOSAR Basic
Software Service Calls” on page 7-12 and “Simulate AUTOSAR Basic Software Services and Run-Time
Environment” on page 7-36.

For an example of using BSW blocks in an AUTOSAR architecture model, see “Author AUTOSAR
Compositions and Components in Architecture Model” on page 8-42.

Connect a Test Harness
After you develop an architecture model, you can connect it to a test harness model that provides
meaningful input values and plant model elements. For example, consider the architecture model
autosar_tpc_composition from example “Author AUTOSAR Compositions and Components in
Architecture Model” on page 8-42. The model has three require (input) ports and one provide
(output) port.

 Configure AUTOSAR Scheduling and Simulation

8-31

Here is a test harness model for simulating the architecture model autosar_tpc_composition.
The test harness contains a plant model with a pedal input block and signals that correspond with the
architecture model require and provide ports. This model was adapted from example model
autosar_tpc_system.

To connect the architecture model to the test harness:

1 Insert a Model block.
2 Configure the Model block to reference the architecture model.
3 In the Model block dialog box, select the option Schedule rates. For the associated parameter

Schedule rates with, select Schedule Editor. The architecture model components have
explicit partitions that you can schedule with the Schedule Editor.

4 Connect the architecture model ports to the test harness signals.

8 AUTOSAR Software Architecture Modeling

8-32

To view and run the completed test harness model, open example model autosar_tpc_system. (To
open the model in a local working folder, use openExample('autosar_tpc_system').)

Schedule Component Runnables
For AUTOSAR Classic Platform software components that contain multiple runnables, the AUTOSAR
Timing Extensions specification defines execution order constraints. These constraints specify the
execution order of runnable entities within a component. You can view and manipulate the
constraints at the component level or, in AUTOSAR architecture models, at the Virtual Function Bus
(VFB) level.

In architecture models, you can:

• Import VFB-level execution order constraints from ARXML files.
• Use the Schedule Editor to modify the execution order of AUTOSAR component runnables. The

editor displays every runnable in every component in the composition hierarchy.
• As part of composition export, export VFB-level execution order constraints to an ARXML timing

module, modelname_timing.arxml.

To schedule and specify the execution order of AUTOSAR component runnables, use the Schedule
Editor. From a standalone component model or an architecture model, you can:

• View a graphical representation of component runnables as partitions in an AUTOSAR component
or architecture model.

• Create partitions and map them to AUTOSAR runnables.
• Directly specify the execution order of runnables.

The Schedule Editor supports multiple modeling styles, including rate-based and export-function
modeling. For more information, see “Using the Schedule Editor” and “Create Partitions”. For
AUTOSAR component model examples, see “Configure AUTOSAR Runnable Execution Order” on
page 4-181.

In an AUTOSAR architecture model, to open the Schedule Editor, open the Modeling tab and select
Design Tools > Schedule Editor. The editor displays every runnable in every component in the

 Configure AUTOSAR Scheduling and Simulation

8-33

composition hierarchy. Here is the execution order view when you open the Schedule Editor from the
example architecture model autosar_tpc_composition. Use the editor controls to modify the
execution order of the runnables.

Exporting a composition from an AUTOSAR architecture model exports VFB-level execution order
constraints into the file modelname_timing.arxml. The ARXML module aggregates timing
information from the entire composition hierarchy. This ARXML code shows the execution order
constraint exported for the runnables in autosar_tpc_composition, based on the Schedule Editor
configuration.
<VFB-TIMING UUID="...">
 <SHORT-NAME>TPC_Composition</SHORT-NAME>
 <TIMING-REQUIREMENTS>
 <EXECUTION-ORDER-CONSTRAINT UUID="...">
 <SHORT-NAME>EOC</SHORT-NAME>
 <BASE-COMPOSITION-REF DEST="COMPOSITION-SW-COMPONENT-TYPE">
 /Components/TPC_Composition
 </BASE-COMPOSITION-REF>
 <ORDERED-ELEMENTS>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>PedalSensor_PedalSensor_Step</SHORT-NAME>
 <COMPONENT-IREF>
 <TARGET-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">
 /Components/Sensors/PedalSensor
 </TARGET-COMPONENT-REF>
 </COMPONENT-IREF>
 <EXECUTABLE-REF DEST="RUNNABLE-ENTITY">
 /Components/PedalSensor/PedalSensor_IB/PedalSensor_Step
 </EXECUTABLE-REF>

8 AUTOSAR Software Architecture Modeling

8-34

 <SUCCESSOR-REFS>
 <SUCCESSOR-REF DEST="EOC-EXECUTABLE-ENTITY-REF">
 /Timing/TPC_Composition/EOC/TPS_Primary_ThrottleSensor1_Step
 </SUCCESSOR-REF>
 </SUCCESSOR-REFS>
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>TPS_Primary_ThrottleSensor1_Step</SHORT-NAME>
 ...
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>TPS_Secondary_ThrottleSensor2_Step</SHORT-NAME>
 ...
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Monitor_ThrottleSensorMonitor_Step</SHORT-NAME>
 ...
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Ctrl_Controller_Step</SHORT-NAME>
 ...
 </EOC-EXECUTABLE-ENTITY-REF>
 <EOC-EXECUTABLE-ENTITY-REF UUID="...">
 <SHORT-NAME>Actuator_Actuator_Step</SHORT-NAME>
 <COMPONENT-IREF>
 <TARGET-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">
 /Components/TPC_Composition/Actuator
 </TARGET-COMPONENT-REF>
 </COMPONENT-IREF>
 <EXECUTABLE-REF DEST="RUNNABLE-ENTITY">
 /Components/Actuator/Actuator_IB/Actuator_Step
 </EXECUTABLE-REF>
 </EOC-EXECUTABLE-ENTITY-REF>
 </ORDERED-ELEMENTS>
 </EXECUTION-ORDER-CONSTRAINT>
 </TIMING-REQUIREMENTS>
 <COMPONENT-REF DEST="COMPOSITION-SW-COMPONENT-TYPE">
 /Components/TPC_Composition
 </COMPONENT-REF>
</VFB-TIMING>

See Also
Diagnostic Service Component | NVRAM Service Component | Schedule Editor

Related Examples
• “Generate and Package AUTOSAR Composition XML Descriptions and Component Code” on

page 8-36
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Model AUTOSAR Basic Software Service Calls” on page 7-12
• “Design and Simulate AUTOSAR Components and Generate Code” on page 4-77
• “Configure AUTOSAR Runnable Execution Order” on page 4-181
• “Using the Schedule Editor”
• “Create Partitions”
• “Configure AUTOSAR Architecture Model Programmatically” on page 8-59

 Configure AUTOSAR Scheduling and Simulation

8-35

Generate and Package AUTOSAR Composition XML
Descriptions and Component Code

If you have Simulink Coder and Embedded Coder software, from an AUTOSAR architecture model,
you can:

• Export composition and component AUTOSAR XML (ARXML) descriptions and generate
component code.

• Optionally, create a ZIP file to package build artifacts from the model hierarchy, for example, for
relocation and integration.

• Optionally, for AUTOSAR ECU configuration, export an ECU extract that maps the software
components in a composition to an AUTOSAR ECU.

You can export an entire architecture model, a nested composition, or a single component. If you
initiate an export that encompasses a composition, the export includes XML descriptions of the
composition, component prototypes, and composition ports and connectors.

In this section...
“Configure Composition XML Options” on page 8-36
“Export Composition XML and Component Code” on page 8-38
“Export Composition ECU Extract” on page 8-40

Configure Composition XML Options
To prepare for exporting ARXML files, examine and modify XML options. XML options specified at the
architecture model level are inherited during export by each component in the model.

Open an architecture model, such as example model autosar_tpc_composition. (To open the
model in a local working folder, use openExample('autosar_tpc_composition').)

To examine XML options at the architecture model level, from the Modeling tab, select Export >
Configure XML Options. The AUTOSAR Dictionary opens in the XML Options view.

8 AUTOSAR Software Architecture Modeling

8-36

Modifications you make are inherited by every component in the hierarchy. For more information, see
“Configure AUTOSAR XML Options” on page 4-43.

The System Package option applies only to the composition level. If you export an ECU extract for a
composition in the architecture model, System Package specifies the system package path to
generate in the composition ARXML. For more information, see “Export Composition ECU Extract” on
page 8-40.

 Generate and Package AUTOSAR Composition XML Descriptions and Component Code

8-37

Export Composition XML and Component Code
To export ARXML files and generate code for an architecture model:

1 Open an architecture model, such as example model autosar_tpc_composition. (To open the
model in a local working folder, use openExample('autosar_tpc_composition').)

2 To export the architecture model, from the Modeling tab, select Export > Generate Code and
ARXML. In the Export Composition dialog box:

• Specify the name of the ZIP file in which to package the generated files.
• Optionally, specify a path to a folder in which to place the exported ARXML files.
• If you want to export an ECU extract from the composition, select Export ECU extract. For

more information, see “Export Composition ECU Extract” on page 8-40.

To begin the export, click OK.

3 As the architecture model builds, you can view the build log in the Diagnostic Viewer. First the
component models build, each as a standalone top-model build. Finally, composition ARXML is
exported. When the build is complete, the current folder contains build folders for the
architecture model and each component model in the hierarchy, and the specified ZIP file.

4 Expand the ZIP file. Its content is organized in arxml and src folders.

5 Examine the arxml folder. Each AUTOSAR component has component and implementation
description files, while the architecture model has composition, datatype, interface, and timing
description files. The composition file includes XML descriptions of the composition, component
prototypes, and composition ports and connectors. The datatype, interface, and timing files
aggregate elements from the entire architecture model hierarchy.

8 AUTOSAR Software Architecture Modeling

8-38

6 Examine the src folder. Each component model has a build folder that contains artifacts from a
standalone model build.

To export a nested composition or a single component in an architecture model, use composition or
component block cues or right-click options. For example, right-click a component block and select
Export Component. Components exported from an architecture model inherit the XML options
specified at the architecture model level.

In an architecture model, for export, AUTOSAR schema versions must match between the
architecture model and the component models in the hierarchy. If export flags a version difference, fix
the discrepancy in the component model or in the architecture model. To view the architecture model
schema version, open the Configuration Parameters dialog box. In the Modeling tab, select Model
Settings. In the dialog box, navigate to the AUTOSAR code generation options pane.

 Generate and Package AUTOSAR Composition XML Descriptions and Component Code

8-39

To export from an architecture model hierarchy programmatically, use the architecture function
export. For example, to generate and package ARXML files and code for example model
autosar_tpc_composition:
% Load AUTOSAR architecture model
archModel = autosar.arch.loadModel('autosar_tpc_composition');
% Export ARXML descriptions and code into ZIP file
export(archModel,'PackageCodeAndARXML','myArchModel.zip');

Export Composition ECU Extract
You can export ECU extracts from compositions in an AUTOSAR architecture model. ECU extracts
are an important input to AUTOSAR ECU configuration. In an AUTOSAR architecture, a top-level
composition can model the software components mapped to one AUTOSAR ECU. To create a software
description of the ECU-scoped system, you export an ECU extract from the composition.

In an open architecture model, you can export ARXML by using the Simulink Toolstrip, the software
architecture canvas, or the export function. For example, from the Modeling tab, select Export >
Generate Code and ARXML. In the Export Composition dialog box, select the option Export ECU
extract. To begin the export, click OK.

To generate the ECU extract, the software automatically maps the software components in the
composition to an ECU. If the composition contains nested compositions, the software uses a
flattened version of the composition hierarchy, containing only components. For example, these
function calls export an ECU extract for the AUTOSAR example architecture model
autosar_tpc_composition, which contains a nested composition.
% Load and export AUTOSAR architecture model, generating ECU extract
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
archModel = autosar.arch.loadModel('autosar_tpc_composition');
open(archModel); % Open loaded model in the editor (optional)
export(archModel,'ExportECUExtract',true);

The export function call generates the ECU extract into the file System.arxml, which is located in
the composition folder. The ECU extract for autosar_tpc_composition maps components from
both the top-level composition and a nested Sensors composition to one ECU.
<SYSTEM UUID="...">
 <SHORT-NAME>EcuExtract</SHORT-NAME>
 <CATEGORY>ECU_EXTRACT</CATEGORY>
 <MAPPINGS>
 <SYSTEM-MAPPING UUID="...">
 <SHORT-NAME>SystemMapping</SHORT-NAME>
 <SW-MAPPINGS>
 <SWC-TO-ECU-MAPPING UUID="...">
 <SHORT-NAME>SwcToEcuMapping</SHORT-NAME>
 <COMPONENT-IREFS>

8 AUTOSAR Software Architecture Modeling

8-40

 <COMPONENT-IREF>
 <TARGET-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">
 /Components/TPC_Composition/Ctrl
 </TARGET-COMPONENT-REF>
 </COMPONENT-IREF>
 ...
 <COMPONENT-IREF>
 <TARGET-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">
 /Components/TPC_Composition/PedalSensor
 </TARGET-COMPONENT-REF>
 </COMPONENT-IREF>
 </COMPONENT-IREFS>
 <ECU-INSTANCE-REF DEST="ECU-INSTANCE">
 /System/EcuInstance
 </ECU-INSTANCE-REF>
 </SWC-TO-ECU-MAPPING>
 </SW-MAPPINGS>
 </SYSTEM-MAPPING>
 </MAPPINGS>
 <ROOT-SOFTWARE-COMPOSITIONS>
 <ROOT-SW-COMPOSITION-PROTOTYPE UUID="...">
 <SHORT-NAME>RootSwCompositionPrototype</SHORT-NAME>
 <SOFTWARE-COMPOSITION-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">
 /Components/TPC_Composition
 </SOFTWARE-COMPOSITION-TREF>
 </ROOT-SW-COMPOSITION-PROTOTYPE>
 </ROOT-SOFTWARE-COMPOSITIONS>
</SYSTEM>

<ECU-INSTANCE UUID="...">
 <SHORT-NAME>EcuInstance</SHORT-NAME>
</ECU-INSTANCE>

To specify the AUTOSAR package path for the system package that contains the ECU extract, use the
composition XML option System Package. To view the System Package path value, from the
Modeling tab, select Export > Configure XML Options.

Alternatively, configure the AUTOSAR system package path by using the AUTOSAR property
functions get and set.
% Set the AUTOSAR system package path
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
archModel = autosar.arch.loadModel('autosar_tpc_composition');
arProps = autosar.api.getAUTOSARProperties('autosar_tpc_composition');
set(arProps,'XmlOptions','SystemPackage','/System');
systemPackage = get(arProps,'XmlOptions','SystemPackage');

For more information about the hierarchical AUTOSAR package structure, see “Configure AUTOSAR
Packages” on page 4-84.

See Also
Software Composition | Software Component | export

Related Examples
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Configure AUTOSAR XML Options” on page 4-43
• “Generate AUTOSAR C Code and XML Descriptions” on page 5-2
• “Configure AUTOSAR Architecture Model Programmatically” on page 8-59

 Generate and Package AUTOSAR Composition XML Descriptions and Component Code

8-41

Author AUTOSAR Compositions and Components in
Architecture Model

Develop AUTOSAR compositions and components for the Classic Platform by using an architecture
model.

An AUTOSAR architecture model provides resources and a canvas for developing AUTOSAR
composition and component models. From the architecture model, you can:

• Add and connect AUTOSAR compositions and components.
• Create architecture views for analysis.
• Link components to requirements (requires Requirements Toolbox).
• Define component behavior by creating, importing, or linking Simulink models.
• Configure scheduling and simulation.
• Export composition and component ARXML descriptions and generate component code (requires

Embedded Coder).

Architecture models provide an end-to-end AUTOSAR software design workflow. In Simulink, you can
author a high-level application design, implement behavior for application components, add Basic
Software (BSW) service calls and service implementations, and simulate the application.

Create Architecture Model

To begin developing AUTOSAR compositions and components in a software architecture canvas,
create an AUTOSAR architecture model (requires System Composer).

1. Open the Simulink Start Page by entering the MATLAB command simulink.

2. On the New tab, scroll down to AUTOSAR Blockset and expand the list of model templates. Place
your cursor over the Software Architecture template and click Create Model.

A new AUTOSAR architecture model opens.

3. Explore the controls and content in the software architecture canvas.

• In the Simulink Toolstrip, the Modeling tab supports common tasks for architecture modeling.
• To the left of the model window, the palette includes icons for adding different types of AUTOSAR

components to the model: Software Component, Software Composition, and for Basic Software
(BSW) modeling, Diagnostic Service Component and NVRAM Service Component.

• The composition editor provides a view of AUTOSAR software architecture based on the
AUTOSAR Virtual Function Bus (VFB). The model canvas initially is empty.

8 AUTOSAR Software Architecture Modeling

8-42

This example constructs a throttle position control application. Perform the steps in a new
architecture model or refer to example model autosar_tpc_composition, which shows the end
result.

% Open example model autosar_tpc_composition for reference
open_system('autosar_tpc_composition')

Add Compositions and Components and Link Implementation Models

After you create an AUTOSAR architecture model, use the composition editor and the Simulink
Toolstrip Modeling tab to add and connect compositions and components.

The behavior of the AUTOSAR application is defined by its AUTOSAR components, which you link to
Simulink implementation models. For convenience, this example provides a Simulink implementation
model for each AUTOSAR component:

• autosar_tpc_throttle_sensor1.slx for component TPS_Primary
• autosar_tpc_throttle_sensor2.slx for component TPS_Secondary
• autosar_tpc_throttle_sensor_monitor.slx for component Monitor
• autosar_tpc_pedal_sensor.slx for component PedalSensor
• autosar_tpc_controller.slx for component Ctrl
• autosar_tpc_actuator.slx for component Actuator

Four of the throttle position control components are sensor components, which this example places in
a Sensors composition.

In your architecture model:

1. To create a nested Sensors composition, add a Software Composition block. For example, on the
Modeling tab, select Software Composition and insert a Software Composition block in the canvas.
In the highlighted name field, enter Sensors.

 Author AUTOSAR Compositions and Components in Architecture Model

8-43

2. Open the Sensors block so that the model canvas shows the composition content. Inside the
composition, add Software Component blocks to represent AUTOSAR components named
TPS_Primary, TPS_Secondary, Monitor, and PedalSensor. For example, on the Modeling tab,
you can select Software Component to create each one.

3. Link each AUTOSAR sensor component to a Simulink model that implements its behavior. For
example, select the TPS_Primary component block, place your cursor over the displayed ellipsis,
and select the cue Link to Model.

In the Link to Model dialog box, browse to the implementation model
autosar_tpc_throttle_sensor1.slx.

8 AUTOSAR Software Architecture Modeling

8-44

To link the component to the implementation model, click OK.

In an architecture model, when you initiate linking of a component block to an implementation model,
the software verifies whether the specified model meets linking requirements. For example, the
implementation model must use the same target as the architecture model, use a fixed-step solver,
and use root-level bus ports. If the implementation model does not meet one or more of the linking
requirements, the software opens the AUTOSAR Model Linker app, which offers fixes for the unmet
requirements. For more information, see “Link to Implementation Model” on page 8-23.

The implementation models provided for this example meet the linking requirements.

4. After you link each model, you can resize the associated component block to better display the
component ports.

5. Connect the components to each other and to composition root ports.

• To interconnect components, drag a line from a component provider port to another component
receiver port.

• To connect components to Sensors composition root ports, drag from a component port to the
Sensors composition boundary.

 Author AUTOSAR Compositions and Components in Architecture Model

8-45

Optionally, to exactly match the root port naming in example model autosar_tpc_composition,
rename ports TPS_HwIO and TPS_HwIO1 to TPS1_HwIO and TPS2_HwIO.

6. Return to the top level of the architecture model. To complete the application, add two Software
Component blocks and name them Ctrl and Actuator. Link the AUTOSAR components to their
Simulink implementation models, autosar_tpc_controller.slx and
autosar_tpc_actuator.slx. Connect the Sensors composition, Ctrl component, and Actuator
component to each other and to the architecture model boundary.

7. To check for interface or data type issues, update the architecture model. On the Modeling tab,
select Update Model. If issues are found, compare your model with example model
autosar_tpc_composition.slx.

8. Save the model with a unique name, such as myTPC_Composition.slx.

Optional: Create Architecture Views for Analysis

To help analyze structural and functional aspects of an AUTOSAR architecture model, you can create
a filtered view of the model hierarchy. On the Modeling tab, in the Architecture Views menu:

8 AUTOSAR Software Architecture Modeling

8-46

• Select Spotlight to create a spotlight view.
• Select Architecture Views to create a custom view with grouping criteria.

To help analyze component or composition dependencies, create a spotlight view. A spotlight view is a
simplified view of an architecture component or composition that captures its upstream and
downstream dependencies.

For this example, select the component Monitor, either in the example model
autosar_tpc_composition or in the architecture model that you created and saved. On the
Modeling tab, select Architecture Views > Spotlight.

The spotlight view opens and shows the model elements to which the component or composition
connects in a hierarchy. The spotlight diagram is laid out automatically and cannot be edited.

Optionally, you can create spotlight views in separate, persistent model windows. Updating the
architecture model diagram with changes refreshes open spotlight views. While in spotlight view, you
can move the spotlight focus.

To create a custom view with more sophisticated filtering conditions, use the Architecture Views
Gallery. On the Modeling tab, select Architecture Views. Custom views can be saved with the
architecture model, then accessed and shared by collaborating users. For more information, see
“Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis” on page 8-14.

Optional: Link Components to Requirements (Requirements Toolbox)

If you have Requirements Toolbox software, you can link components in the architecture model to
Simulink requirements. The example folder provides sample requirements file
TPC_Requirements.slreqx. The file contains requirements for four of the throttle position control
application components.

To link a component to a requirement:

 Author AUTOSAR Compositions and Components in Architecture Model

8-47

1. Open the Requirements Manager app. In the architecture model window, the Requirements tab
opens, with the Requirements Browser docked at the bottom.

2. In the Requirements Browser, open requirements set TPC_Requirements.slreqx. The
requirements set contains requirements for four components in the model.

3. To link an AUTOSAR component to a requirement, drag the requirement from the Requirements
Browser to the component block. For example, drag requirement 4 to the Actuator component
block.

For more information, see “Link AUTOSAR Components to Simulink Requirements” on page 8-19.

Configure and Run Simulation

To simulate the behavior of the aggregated components in an AUTOSAR architecture model, click
Run.

If you try to run the architecture model constructed in this example, an error message reports that a
function definition was not found for a Basic Software (BSW) function caller block. Three of the
component implementation models contain BSW function calls that require BSW service
implementations.

To view those function calls, open your architecture model, for example, myTPC_Composition.slx.
On the Debug tab, select Information Overlays > Function Connectors. This selection lists
function connectors for each model with functions. To see the models with BSW function calls, open
the Sensors composition.

8 AUTOSAR Software Architecture Modeling

8-48

The models contain function calls to Diagnostic Event Manager (Dem) and NVRAM Manager (NvM)
services. Before the application can be simulated, you must add Diagnostic Service Component and
NVRAM Service Component blocks to the top model.

To add and configure the service implementation blocks:

1. Return to the top level of the architecture model and select the Modeling tab. Select and place an
instance of Diagnostic Service Component and an instance of NVRAM Service Component. To
wire the function callers to the BSW service implementations, update the model.

2. Check the mapping of the BSW function-caller client ports to BSW service IDs. Dem client ports
map to Dem service event IDs and NvM client ports map to NvM service block IDs.

For this example, update the Dem mapping. Open the DEM/FIM block dialog box, select the RTE tab,
and enter the event ID values shown. Click OK. For more information about BSW ID mapping, see
“Simulate AUTOSAR Basic Software Services and Run-Time Environment” on page 7-36.

 Author AUTOSAR Compositions and Components in Architecture Model

8-49

The architecture model is now ready to be simulated. Click Run.

Connect Architecture Model to Test Harness Containing Plant Model and Pedal Input

To provide simulated pedal input to the throttle position control simulation, you can place the
architecture model in a test harness model. The test harness can provide a plant model with a pedal
input block. Refer to example test-harness model autosar_tpc_system.slx.

To connect the architecture model to the test harness:

1. Insert a Model block.

2. Configure the Model block to reference your architecture model, for example,
myTPC_Composition.slx.

8 AUTOSAR Software Architecture Modeling

8-50

3. In the Model block dialog box, select the option Schedule rates. For the associated parameter
Schedule rates with, select Schedule Editor. The throttle position control components have
explicit partitions that you can schedule with the Schedule Editor.

4. Connect the architecture model ports to the test harness signals.

The test harness model is now ready to be simulated. Click Run. When you simulate the application,
the throttle position scope indicates how well the throttle-position control algorithms in the
architecture model are tracking the accelerator pedal input.

In a test harness model, from the Model block for a referenced AUTOSAR architecture model, you
can use the Schedule Editor to schedule rates for component runnables. To open the Schedule Editor,
click the Schedule Editor badge immediately above the Model block. In the Schedule Editor display,
you can visualize and control the order of execution of the runnables (partitions) in the application
components. For more information, see “Using the Schedule Editor”, “Configure AUTOSAR Runnable
Execution Order” on page 4-181, and “Configure AUTOSAR Scheduling and Simulation” on page 8-
31.

Generate and Package Composition ARXML Descriptions and Component Code (Embedded
Coder)

If you have Simulink Coder and Embedded Coder software, you can export composition and
component AUTOSAR XML (ARXML) descriptions and generate component code from an AUTOSAR
architecture model. Optionally, create a ZIP file to package build artifacts for the model hierarchy, for
example, for relocation and integration.

To export ARXML files and generate code:

1. Open the architecture model constructed in this example or open example model
autosar_tpc_composition.slx.

2. To prepare for exporting ARXML, examine and modify XML options. On the Modeling tab, select
Export > Configure XML Options. The AUTOSAR Dictionary opens in the XML Options view. XML
options specified at the architecture model level are inherited during export by each component in
the model.

 Author AUTOSAR Compositions and Components in Architecture Model

8-51

3. To generate and package code for the throttle position control application, on the Modeling tab,
select Export > Generate Code and ARXML. In the Export Composition dialog box, specify the
name of the ZIP file in which to package the generated files. To begin the export, click OK.

As the architecture model builds, you can view the build log in the Diagnostic Viewer. First the
component models build, each as a standalone top-model build. Finally, composition ARXML is
exported. When the build is complete, the current folder contains build folders for the architecture
model and each component model in the hierarchy, and the specified ZIP file.

4. Expand the ZIP file. Its content is organized in arxml and src folders.

5. Examine the arxml folder. Each AUTOSAR component has component and implementation
description files, while the architecture model has composition, datatype, interface, and timing
description files. The composition file includes XML descriptions of the composition, component
prototypes, and composition ports and connectors. The datatype, interface, and timing files aggregate
elements from the entire architecture model hierarchy. Nonfunctional properties captured in
stereotypes and profiles are not included in the description files.

8 AUTOSAR Software Architecture Modeling

8-52

6. Examine the src folder. Each component model has a build folder that contains artifacts from a
standalone model build.

Related Links

• “Create AUTOSAR Architecture Models” on page 8-2
• “Add and Connect AUTOSAR Compositions and Components” on page 8-4
• “Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis” on page 8-14
• “Link AUTOSAR Components to Simulink Requirements” on page 8-19
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21

 Author AUTOSAR Compositions and Components in Architecture Model

8-53

• “Configure AUTOSAR Scheduling and Simulation” on page 8-31
• “Generate and Package AUTOSAR Composition XML Descriptions and Component Code” on page

8-36

8 AUTOSAR Software Architecture Modeling

8-54

Import AUTOSAR Composition into Architecture Model

Import ARXML description of AUTOSAR software composition into architecture model.

After you create an AUTOSAR architecture model (requires System Composer), develop the top-level
AUTOSAR software design. The composition editor provides a view of AUTOSAR software
architecture based on the AUTOSAR Virtual Function Bus (VFB).

Import AUTOSAR Composition from ARXML File

If you have an ARXML description of an AUTOSAR software composition, you can import the
composition into an AUTOSAR architecture model. The import creates a Simulink representation of
the composition at the top level of the architecture model. Composition import requires an open
AUTOSAR architecture model with no functional content.

To import an AUTOSAR software composition from ARXML files into an architecture model:

1. Create or open an AUTOSAR architecture model that has no functional content. For example, enter
this MATLAB® command.

% Create AUTOSAR architecture model
modelName = "myArchModel";
archModel = autosar.arch.createModel(modelName);

2. In the open architecture model, on the Modeling tab, in the Component menu, select Import
from ARXML.

3. In the AUTOSAR Importer app, in the Select ARXML pane, in the ARXML Files field, enter the
names of one or more ARXML files (comma separated) that describe an AUTOSAR software
composition. For this example, enter ThrottlePositionControlComposition.arxml.

Click Next. The app parses the specified ARXML file.

4. In the Create Composition pane, the Composition name menu lists the compositions found in
the parsed ARXML file. Select the composition /Company/Components/
ThrottlePositionControlComposition.

Optionally, to view additional modeling options for composition creation, select Configure Modeling
Options.

 Import AUTOSAR Composition into Architecture Model

8-55

You can specify:

• Whether to include or exclude AUTOSAR software components, which define composition
behavior. By default, the import includes components within the composition.

• Simulink data dictionary in which to place data objects for imported AUTOSAR data types.
• Names of existing Simulink behavior models to link to imported AUTOSAR software components.
• Component options to apply when creating Simulink behavior models for imported AUTOSAR

software components. For example, how to model periodic runnables, or a PredefinedVariant
or SwSystemconstantValueSets with which to resolve component variation points.

For more information about modeling options and behavior, see the importFromARXML reference
page.

5. To finish importing the composition into the architecture model, click Finish. The Diagnostic
Viewer displays the progress of the composition creation. On completion, the imported composition
appears in the software architecture canvas.

To perform steps 2 through 5 programmatically, run these commands.

% Import composition from file ThrottlePositionControlComposition.arxml
importerObj = arxml.importer("ThrottlePositionControlComposition.arxml"); % Parse ARXML
importFromARXML(archModel,importerObj,...
 "/Company/Components/ThrottlePositionControlComposition");

Created model 'ThrottlePositionSensor' for component 1 of 5: /Company/Components/ThrottlePositionSensor
Created model 'ThrottlePositionMonitor' for component 2 of 5: /Company/Components/ThrottlePositionMonitor
Created model 'Controller' for component 3 of 5: /Company/Components/Controller
Created model 'AccelerationPedalPositionSensor' for component 4 of 5: /Company/Components/AccelerationPedalPositionSensor
Created model 'ThrottlePositionActuator' for component 5 of 5: /Company/Components/ThrottlePositionActuator
Importing composition 1 of 1: /Company/Components/ThrottlePositionControlComposition

8 AUTOSAR Software Architecture Modeling

8-56

Because this composition import was configured to include AUTOSAR software components
(modeling option Exclude internal behavior from import was cleared), the import created
Simulink models for each component in the composition.

Develop AUTOSAR Component Algorithms

After creating an initial Simulink representation of the AUTOSAR composition, you develop each
component in the composition. For each component, you refine the AUTOSAR configuration and
create algorithmic model content.

For example, the Controller component model in the ThrottlePositionControlComposition
composition model contains an atomic subsystem Runnable_Step_sys, which represents an
AUTOSAR periodic runnable. The Runnable_Step_sys subsystem contains the initial stub
implementation of the controller behavior.

Here is a possible implementation of the throttle position controller behavior. (To explore this
implementation, see the model autosar_swc_controller, which is provided with the example
“Design and Simulate AUTOSAR Components and Generate Code” on page 4-77.) The component
takes as inputs an APP sensor percent value from a pedal position sensor and a TPS percent value
from a throttle position sensor. Based on these values, the controller calculates the error. The error is
the difference between where the operator wants the throttle, based on the pedal sensor, and the
current throttle position. In this implementation, a Discrete PID Controller block uses the error value
to calculate a throttle command percent value to provide to a throttle actuator. A scope displays the
error value and the Discrete PID Controller block output value over time.

 Import AUTOSAR Composition into Architecture Model

8-57

As you develop AUTOSAR components, you can:

• Simulate component models individually or as a group within the architecture model.
• Generate ARXML description files and algorithmic C code for testing in Simulink or integration

into an AUTOSAR run-time environment. (AUTOSAR code generation requires Simulink Coder and
Embedded Coder.)

For more information on developing, simulating, and building AUTOSAR components, see example
“Design and Simulate AUTOSAR Components and Generate Code” on page 4-77.

Related Links

• importFromARXML
• “Import AUTOSAR Composition from ARXML” on page 8-10
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42
• “Design and Simulate AUTOSAR Components and Generate Code” on page 4-77

8 AUTOSAR Software Architecture Modeling

8-58

Configure AUTOSAR Architecture Model Programmatically
An AUTOSAR architecture model provides resources and a canvas for developing AUTOSAR
composition and component models. You develop the software architecture by using graphical user
interfaces, equivalent architecture modeling functions, or both. AUTOSAR Blockset provides
functions for these architecture related tasks.

Tasks Functions
Create, load, open, save, or close an AUTOSAR
architecture model

autosar.arch.createModel
autosar.arch.loadModel
close
open
save

Add, connect, or remove AUTOSAR components,
composition, and ports

addComponent
addComposition
addPort
connect
destroy
importFromARXML
layout

Find AUTOSAR elements and modify properties find
get
set

Define component behavior by creating or linking
Simulink models

createModel
linkToModel

Add Basic Software (BSW) service component
blocks for simulating BSW service calls

addBSWService

Export composition and component ARXML
descriptions and generate component code
(requires Embedded Coder®)

export
getXmlOptions
setXmlOptions

This example script:

1 Creates and opens an AUTOSAR architecture model.
2 Adds a composition and components.
3 Adds architecture, composition, and component ports.
4 Connects architecture, composition, and component ports.
5 Creates and links Simulink implementation models for components.
6 Arranges architecture model layout based on heuristics.
7 Sets component and port properties.
8 Removes a component.
9 Searches for elements at different levels of the architecture model hierarchy.
10 Lists property values for composition ports.

To run the script, copy commands from the MATLAB script listing below to the MATLAB command
window.

 Configure AUTOSAR Architecture Model Programmatically

8-59

Alternatively, you can copy the script file configAutosarArchModel.m to your working folder and
run the file. To copy the script to your working folder, enter this MATLAB command:
copyfile(fullfile(matlabroot,'help/toolbox/autosar/examples/configAutosarArchModel.m'),'.')

% configAutosarArchModel.m
%
% Configure AUTOSAR architecture model.
% This script creates models Controller1.slx and Actuator.slx.
% To rerun the script, remove the models from the working folder.

% Create and open AUTOSAR architecture model
modelName = 'myArchModel';
archModel = autosar.arch.createModel(modelName);

% Add a composition
composition = addComposition(archModel,'Sensors');

% Add 2 components inside Sensors composition
names = {'PedalSnsr','ThrottleSnsr'};
sensorSWCs = addComponent(composition,names,'Kind','SensorActuator');
layout(composition); % Auto-arrange composition layout

% Add components at architecture model top level
controller = addComponent(archModel,'Controller');
actuator = addComponent(archModel,'Actuator');
set(actuator,'Kind','SensorActuator');
layout(archModel);

% Add ports to architecture model and the Sensors composition
addPort(archModel,'Receiver',{'APP_HwIO', 'TPS_HwIO'});
addPort(archModel,'Sender','ThrCmd_HwIO');
addPort(composition,'Receiver',{'TPS_HwIO','APP_HwIO'});
addPort(composition,'Sender',{'APP_Percent', 'TPS_Percent'});

% Link components to implementation models
% Add path to implementation model
addpath(fullfile(matlabroot,'/examples/autosarblockset/main'));
pedalSnsr = find(composition,'Component','Name','PedalSnsr');
linkToModel(pedalSnsr,'autosar_tpc_pedal_sensor');
throttleSnsr = find(composition,'Component','Name','ThrottleSnsr');
%linkToModel(throttleSnsr,'autosar_tpc_throttle_sensor1');
linkToModel(actuator, 'autosar_tpc_actuator');
linkToModel(controller, 'autosar_tpc_controller')

% add ports to throttle sensor component and create behavior model
addPort(throttleSnsr,'Sender','TPS_Percent');
addPort(throttleSnsr,'Receiver','TPS_HwIO');
createModel(throttleSnsr);

% implement internal behavior for throttle sensor. Here, we simply adjust
% datatypes on the ports.
set_param('ThrottleSnsr/In Bus Element', 'OutDataTypeStr', 'uint16');
set_param('ThrottleSnsr/Out Bus Element', 'OutDataTypeStr', 'single');

% connect composition and components based on matching port names
connect(archModel,composition,controller);
connect(archModel,controller,actuator);
connect(archModel,[],composition);
connect(archModel,actuator,[]);
connect(composition, [], pedalSnsr);
connect(composition, [], throttleSnsr);
connect(composition, pedalSnsr, []);
connect(composition, throttleSnsr, []);
connect(archModel,composition, controller);

% can also use API to connect specific ports
ThrCmd_Percent_pport = find(controller, 'Port', 'Name', 'ThrCmd_Percent');
ThrCmd_Percent_rport = find(actuator, 'Port', 'Name', 'ThrCmd_Percent');
connect(archModel, ThrCmd_Percent_pport, ThrCmd_Percent_rport);

8 AUTOSAR Software Architecture Modeling

8-60

layout(archModel); % Auto-arrange layout

% Find components in architecture model top level only
components_in_arch_top_level = find(archModel,'Component');
% Find components in all hierarchy
components_in_all_hierarchy = find(archModel,'Component','AllLevels',true);
% Find ports for composition block only
composition_ports = find(composition,'Port');

% List Kind and Name property values for composition ports
for ii=1:length(composition_ports)
 Port = composition_ports(ii);
 portName = get(Port,'Name');
 portKind = get(Port,'Kind');
 fprintf('%s port %s\n',portKind,portName);
end

% simulate the architecture model
sim(modelName);

components_in_arch_top_level =
 2×1 Component array with properties:
 Name
 Kind
 Ports
 ReferenceName
 Parent
 SimulinkHandle

components_in_all_hierarchy =
 3×1 Component array with properties:
 Name
 Kind
 Ports
 ReferenceName
 Parent
 SimulinkHandle

composition_ports =
 4×1 CompPort array with properties:
 Kind
 Connected
 Name
 Parent
 SimulinkHandle

Receiver port NewPortName1
Receiver port APP_Hw
Sender port NewPortName2
Sender port APP_Perc

See Also
Software Component | Software Composition | Diagnostic Service Component | NVRAM Service
Component

Related Examples
• “Create AUTOSAR Architecture Models” on page 8-2
• “Add and Connect AUTOSAR Compositions and Components” on page 8-4
• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21
• “Configure AUTOSAR Scheduling and Simulation” on page 8-31
• “Generate and Package AUTOSAR Composition XML Descriptions and Component Code” on

page 8-36
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42

 Configure AUTOSAR Architecture Model Programmatically

8-61

Manage Shared Interfaces and Data Types for AUTOSAR
Architecture Models

Interface dictionaries enable interfaces, data types, and AUTOSAR-specific design data to be
authored, managed, and shared between AUTOSAR components and compositions modeled in
Simulink. Interface dictionaries provide scalability for system-level and multicomponent designs by
containing these shared elements in a central location.

You can programmatically or graphically configure the attributes and contents of an interface
dictionary and apply them to an architecture model using this basic workflow:

1 Create an interface dictionary.
2 Design interface and data types with the interface dictionary API or the standalone Interface

Editor.
3 Link the interface dictionary to an architecture model.
4 Apply the interfaces to the architecture model in the Simulink environment.
5 Deploy the interface dictionary shared interface and data type content in the final application.

To migrate data stored in the base workspace or in a data dictionary hierarchy to the interface
dictionary associated with an architecture model, use the interface dictionary Migrator object.

Create Interface Dictionary
To create an interface dictionary programmatically, use the
Simulink.interface.dictionary.create function.

% create new interface dictionary
dictName = 'MyInterfaces.sldd';
dictAPI = Simulink.interface.dictionary.create(dictName);

Alternatively, to create an interface dictionary from the AUTOSAR architecture model toolstrip, on
the Modeling tab, open the Design menu and select Create new dictionary from the Interfaces
and Types section.

8 AUTOSAR Software Architecture Modeling

8-62

Design Data Types and Interfaces by Using Interface Dictionary
Once you create your interface dictionary, you can add design data programmatically by using the
interface dictionary API or interactively by using the standalone Interface Editor. These tools allow
you to author shared elements outside of the context of a particular component or composition and
allow multiple team members to share in the definition and management of these elements.

Add Design Data Programmatically

To programmatically create, configure, and manage interfaces and data types in your interface
dictionary, use the functions for the Simulink.interface.Dictionary object.

Here, use type-specific functions to add alias types, value types, structured types, and enumerations
to the interface dictionary.

 Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models

8-63

% add DataTypes
%% AliasTypes
myAliasType1 = dictAPI.addAliasType('aliasType', BaseType='single');
myAliasType1.Name = 'myAliasType1';
myAliasType1.BaseType = 'fixdt(1,32,16)';

myAliasType2 = dictAPI.addAliasType('myAliasType2');
% can also use interface dict type objs
myAliasType2.BaseType = myAliasType1;

%% EnumTypes
myEnumType1 = dictAPI.addEnumType('myColor');
myEnumType1.addEnumeral('RED', '0', 'RED BLOOD');
myEnumType1.addEnumeral('BLUE', '1', 'Blue Skies');
myEnumType1.DefaultValue = 'BLUE';
myEnumType1.Description = 'I am a Simulink Enumeration';
myEnumType1.StorageType = 'int16';

% set base type of an alias type to be this enum object
myAliasType3 = dictAPI.addAliasType('myAliasType3');
myAliasType3.BaseType = myEnumType1;

%% ValueType
myValueType1 = dictAPI.addValueType('myValueType1');
myValueType1.DataType = 'int32';
myValueType1.Dimensions = '[2 3]';
myValueType1.Description = 'I am a Simulink ValueType';
myValueType1.DataType = myEnumType1; % can also use interface dict type objs

%% StructType
myStructType1 = dictAPI.addStructType('myStructType1');
structElement1 = myStructType1.addElement('Element1');
structElement1.Type.DataType = 'single';
structElement1.Type.Dimensions = '3';
structElement2 = myStructType1.addElement('Element2');
structElement2.Type = myValueType1;
% or
structElement2.Type = 'ValueType: myValueType1';

%% Nested StructType
myStructType2 = dictAPI.addStructType('myStructType2');
myStructType2.Description = 'I am a nested structure';
structElement = myStructType2.addElement('Element');
structElement.Dimensions = '5';
structElement.Type = myStructType1;
% or
structElement.Type = 'Bus: myStructType1';

Then, create, configure, and manage platform-specific properties.

% now add AUTOSARClassic mapping
platformMapping = dictAPI.addPlatformMapping('AUTOSARClassic');

% set platform properties
platformMapping.setPlatformProperty(dataInterface1,...
 'Package', '/Interface2', 'InterfaceKind', 'NvDataInterface');

% get the platform properties

8 AUTOSAR Software Architecture Modeling

8-64

[pNames, pValues] = platformMapping.getPlatformProperties(dataInterface1);

% export dictionary content to code + arxml
platformMapping.exportDictionary();

% managing AUTOSAR Classic platform related elements (these don't have mapping to Simulink)
arObj = autosar.api.getAUTOSARProperties(dictName);
arObj.addPackageableElement('SwAddrMethod','/SwAddressMethods', 'VAR1', 'SectionType', 'Var');

platformMapping.setPlatformProperty(dataElm1,...
 'SwAddrMethod', 'VAR1', 'SwCalibrationAccess', 'ReadWrite', 'DisplayFormat', '%.3f');

Add Design Data Using Standalone Editor

Alternatively, you can add design data by using the standalone Interface Editor. To open the editor
from outside of the context of a model:

• Double-click the .sldd file from the MATLAB Current Folder browser.
• Use the show function of the interface dictionary object.

To open the standalone editor from a model:

• In the Simulink editor of an AUTOSAR architecture model, on the Modeling tab, open the Design
menu and select Open Interface Dictionary.

• In the Model Explorer, under the External Data node for the model, select the interface
dictionary, then click Open Interface Editor from the Dialog pane.

 Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models

8-65

With the standalone Interface Editor, you can easily create, configure, and manage large amounts of
design data.

• Create — On the toolstrip, in the Create section, quickly add data type definitions and interfaces.
Data types and interfaces each have a dedicated tab for easier data management.

• Configure — In the right panel, use the Property Inspector to configure your data. The Property
Inspector can also display platform-specific properties. For example, when you set the deployment
platform to AUTOSAR Classic, the property inspector also displays AUTOSAR interface properties
such as InterfaceKind, IsService, and Package.Setting these properties in the Property
Inspector sets them in the generated interface dictionary .sldd file.

• Manage — You can filter, sort, and search data on the Interfaces and Data Types tabs.

In addition to the Interfaces and Data Types tabs, the Interface Editor displays platform-specific
data for the AUTOSAR Classic platform in the SwAddrMethods tab.

For more information on using the standalone editor, see Interface Editor.

Link Interface Dictionary to Architecture Model
Once you have a saved interface dictionary, you can link it to your architecture model. Link a
dictionary to a model programmatically as follows.

% create interface dictionary
dictName = 'InterfaceDict.sldd';

8 AUTOSAR Software Architecture Modeling

8-66

interfaceDict = Simulink.architecture.dictionary.create(dictName);
dataInterface = interfaceDict.addDataInterface('dataInterface1');

% add AUTOSAR Classic platform mapping to the dictionary
interfaceDict.addPlatformMapping('AUTOSARClassic');

% create AUTOSAR arch model and link interface dictionary
archModel = autosar.arch.createModel('myTopComposition');
archModel.linkDictionary(dictName);

Alternatively, to link an existing interface dictionary from the AUTOSAR architecture model toolstrip,
on the Modeling tab, open the Design menu and select Link existing dictionary from the
Interfaces and Types section. When you create a component model from an AUTOSAR architecture
model, Simulink automatically links it to the interface dictionary.

Use Data Dictionary with Interface Dictionary

The design also allows regular data dictionaries to coexist with an interface dictionary. This approach
allows for proper scoping and encapsulation of the data in your model hierarchy.

• Model workspace — Contains parameters and signal definitions that are scoped to the model.
• Data dictionary — Contains configuration sets, values, and variants that can be shared with other

components but should be separate from interface definitions.
• Interface dictionary — Contains interface and data type definitions that can be shared across

components.

To use both dictionaries, first link a data dictionary to a component model, then reference the
interface dictionary from the data dictionary.

1 Create an empty model.
2 In the Simulink Editor, on the Modeling tab, under Design, click Link to Data Dictionary.
3 In the Model Properties dialog box, create a new data dictionary or link to an existing dictionary.

 Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models

8-67

4 Click the model data badge in the bottom left corner of the model, then click the External Data
link.

5 In the Model Explorer Model Hierarchy pane, under the External Data node, select the node
for the data dictionary.

6 In the Dialog pane, in the Referenced Dictionaries section, add your interface dictionary as a
referenced dictionary.

8 AUTOSAR Software Architecture Modeling

8-68

Apply Interfaces to Architecture Model in Simulink Environment
Once your interface dictionary is linked to an AUTOSAR architecture model, you can apply the
interfaces to your modeled AUTOSAR application programmatically by using the AUTOSAR
architecture model API, or by using the Interface Editor in the Simulink editor window.

Here, you link a dictionary with an AUTOSAR Classic platform mapping to an architecture model then
map a SenderPort to an interface in that dictionary.

% create interface dictionary
dictName = 'InterfaceDict.sldd';
interfaceDict = Simulink.architecture.dictionary.create(dictName);
dataInterface = interfaceDict.addDataInterface('dataInterface1');

% add AUTOSAR Classic platform mapping to the dictionary
interfaceDict.addPlatformMapping('AUTOSARClassic');

% create AUTOSAR arch model and link interface dictionary
archModel = autosar.arch.createModel('myTopComposition');
archModel.linkDictionary(dictName);

pport = archModel.addPort("Sender", 'PPort');
pport.setInterface(dataInterface);

Alternatively, you can apply the interfaces to your AUTOSAR architecture model by using the
Interface Editor or Property Inspector. In the AUTOSAR architecture model toolstrip, on the
Modeling tab, open the Design menu and select Interface Editor. The editor opens as a pane in the
current Simulink Editor window.

 Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models

8-69

The primary focus of this model-centric editor is applying interfaces to ports. It displays the available
interfaces in the linked interface dictionary. By using Interface Editor you can:

• Right-click on an interface to assign the interface to a selected port on the canvas.
• Trace between ports and interfaces
• Focus on a particular interface by using the Port Interface View
• Use the Property Inspector to view and configure a selected interface
• Add data interfaces in the AUTOSAR architecture model. These interfaces can be mapped to

SenderReceiverInterfaces, ModeSwitchInterface, or NVDataInterface by using the
Property Inspector.

Deploy Interface Dictionary
Finally, to deploy an interface dictionary to a particular platform, you must provide a mapping of the
dictionary elements to the platform. When you build an AUTOSAR architecture model, the build
process exports an interface dictionary that is linked to the model as ARXML into a folder with the
interface dictionary name. This ensures that the interfaces and types defined in the dictionary are
included in the ARXML. In addition, the created ZIP file includes the ARXML files that come out of
the dictionary.

8 AUTOSAR Software Architecture Modeling

8-70

You can also export an interface dictionary independently of an architecture model by using the
standalone Interface Editor or the interface dictionary API. In the Interface Editor, in the Share
section, select Export > Export to ARXML. To export programmatically, use the following
commands.

platformMapping = this.DictObj.getPlatformMapping('AUTOSARClassic');
platformMapping.exportDictionary();

Limitations
Some limitations for the interface dictionary include:

• An AUTOSAR Component model cannot reference multiple interface dictionaries.
• The editor for the interface dictionary can only view and edit data interfaces. To author and view

other kinds of interfaces for AUTOSAR workflows, such as client/server, parameter and trigger
interfaces, open the AUTOSAR component dictionary.

 Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models

8-71

• The interface dictionary does not support the import of AUTOSAR information from an ARXML.

See Also
Simulink.interface.Dictionary | autosar.dictionary.ARClassicPlatformMapping |
exportDictionary | getPlatformProperties | getPlatformProperty |
setPlatformProperty | Simulink.interface.dictionary.create |
Simulink.interface.dictionary.open | Migrator | Interface Editor

Related Examples
• “Create AUTOSAR Architecture Models” on page 8-2
• “Add and Connect AUTOSAR Compositions and Components” on page 8-4

8 AUTOSAR Software Architecture Modeling

8-72

• “Define AUTOSAR Component Behavior by Creating or Linking Models” on page 8-21
• “Generate and Package AUTOSAR Composition XML Descriptions and Component Code” on

page 8-36
• “Author AUTOSAR Compositions and Components in Architecture Model” on page 8-42

 Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models

8-73

	Overview of AUTOSAR Support
	AUTOSAR Blockset Product Description
	AUTOSAR Standard
	Comparison of AUTOSAR Classic and Adaptive Platforms
	Classic Platform
	Adaptive Platform

	AUTOSAR Software Components and Compositions
	Workflows for AUTOSAR
	Simulink Originated (Bottom-Up) Workflow
	Round-Trip Workflow

	AUTOSAR Workflow Samples
	Develop AUTOSAR Software Component Model
	Prerequisites
	Example Model
	What You Will Learn

	Create Algorithmic Model Content That Represents AUTOSAR Software Component Behavior
	Configure Elements of AUTOSAR Software Component for Simulink Modeling Environment
	Set Up Initial Component Configuration
	Customize Component Configuration
	Configure AUTOSAR Software Component Elements from AUTOSAR Standard Perspective

	Simulate AUTOSAR Software Component
	Optional: Generate AUTOSAR Software Component Code (Requires Embedded Coder)
	Develop AUTOSAR Adaptive Software Component Model
	Prerequisites
	Example Model
	What You Will Learn

	Create Algorithmic Model Content That Represents AUTOSAR Adaptive Software Component Behavior
	Configure Elements of AUTOSAR Adaptive Software Component for Simulink Modeling Environment
	Set Up an Initial Component Configuration
	Customize Component Configuration
	Configure AUTOSAR Adaptive Software Component Elements from AUTOSAR Standard Perspective

	Simulate AUTOSAR Adaptive Software Component
	Optional: Generate AUTOSAR Adaptive Software Component Code (Requires Embedded Coder)
	Develop AUTOSAR Software Architecture Model
	Prerequisites
	Example Model
	What You Will Learn

	Create AUTOSAR Software Architecture Model
	Add AUTOSAR Compositions and Components and Link Component Implementations
	Add Compositions and Components to Architecture Canvas
	Define Component Behavior by Linking Implementation Models
	Complete Architecture Model Top Level

	Simulate Components in AUTOSAR Architecture
	Optional: Generate and Package Composition ARXML and Component Code (Requires Embedded Coder)

	Modeling Patterns for AUTOSAR Components
	Simulink Modeling Patterns for AUTOSAR
	Model AUTOSAR Software Components
	About AUTOSAR Software Components
	Implementation Considerations
	Rate-Based Components
	Function-Call Based Components
	Multi-Instance Components
	Startup, Reset, and Shutdown

	Modeling Patterns for AUTOSAR Runnables
	Model AUTOSAR Runnables Using Exported Functions
	Model AUTOSAR Communication
	About AUTOSAR Communication
	Sender-Receiver Interface
	Queued Sender-Receiver Interface
	Client-Server Interface
	Mode-Switch Interface
	Nonvolatile Data Interface
	Parameter Interface
	Trigger Interface

	Model AUTOSAR Component Behavior
	AUTOSAR Elements for Modeling Component Behavior
	Runnables
	Inter-Runnable Variables
	Included Data Type Sets
	System Constants
	Per-Instance Memory
	Static and Constant Memory
	Shared and Per-Instance Parameters
	Port Parameters

	Model AUTOSAR Variants
	Variants for Ports and Runnables
	Variants for Runnable Implementations
	Variants for Array Sizes
	Predefined Variants and System Constant Value Sets

	Model AUTOSAR Nonvolatile Memory
	Implicit Access to AUTOSAR Nonvolatile Memory
	Explicit Access to AUTOSAR Nonvolatile Memory

	Model AUTOSAR Data Types
	About AUTOSAR Data Types
	Enumerated Data Types
	Structure Parameters
	Data Types
	CompuMethod Categories for Data Types

	Model AUTOSAR Calibration Parameters and Lookup Tables
	AUTOSAR Calibration Parameters
	Calibration Parameters for STD_AXIS, FIX_AXIS, and COM_AXIS Lookup Tables

	AUTOSAR Component Creation
	Create AUTOSAR Software Component in Simulink
	Create Mapped AUTOSAR Component with Quick Start
	Create Mapped AUTOSAR Component with Simulink Start Page

	Create and Configure AUTOSAR Software Component
	Import AUTOSAR XML Descriptions Into Simulink
	Create ARXML Importer Object
	Import Software Component and Create Model
	Import Software Composition and Create Models
	Import Component or Composition External Updates Into Model
	Import Shared Element Packages into Component Model

	Import AUTOSAR Software Component with Multiple Runnables
	Import AUTOSAR Component to Simulink
	Import AUTOSAR Software Composition with Atomic Software Components (Classic Platform)
	Import AUTOSAR Software Component Updates
	Update Model with AUTOSAR Software Component Changes
	AUTOSAR Update Report Section Examples

	Import and Reference Shared AUTOSAR Element Definitions
	Import AUTOSAR Package into Component Model
	AUTOSAR ARXML Importer
	Round-Trip Preservation of AUTOSAR XML File Structure and Element Information
	Limitations and Tips
	Cannot Save Importer Objects in MAT-Files
	ApplicationRecordDataType and ImplementationDataType Element Names Must Match

	AUTOSAR Component Development
	AUTOSAR Component Configuration
	Configure AUTOSAR Elements and Properties
	AUTOSAR Elements Configuration Workflow
	Configure AUTOSAR Atomic Software Components
	Configure AUTOSAR Ports
	Configure AUTOSAR Runnables
	Configure AUTOSAR Inter-Runnable Variables
	Configure AUTOSAR Parameters
	Configure AUTOSAR Communication Interfaces
	Configure AUTOSAR Computation Methods
	Configure AUTOSAR SwAddrMethods
	Configure AUTOSAR XML Options

	Map AUTOSAR Elements for Code Generation
	Simulink to AUTOSAR Mapping Workflow
	Map Entry-Point Functions to AUTOSAR Runnables
	Map Inports and Outports to AUTOSAR Sender-Receiver Ports and Data Elements
	Map Model Workspace Parameters to AUTOSAR Component Parameters
	Map Data Stores to AUTOSAR Variables
	Map Block Signals and States to AUTOSAR Variables
	Map Data Transfers to AUTOSAR Inter-Runnable Variables
	Map Function Callers to AUTOSAR Client-Server Ports and Operations
	Specify C Type Qualifiers for AUTOSAR Static and Constant Memory
	Specify Default Data Packaging for AUTOSAR Internal Variables

	Map Calibration Data for Submodels Referenced from AUTOSAR Component Models
	Submodel Data Mapping Workflow
	Map Submodel Parameters to AUTOSAR Component Parameters
	Map Submodel Data Stores to AUTOSAR Variables
	Map Submodel Signals and States to AUTOSAR Variables
	Generate Submodel Data Macros for Verification and Deployment

	Incrementally Update AUTOSAR Mapping After Model Changes
	Design and Simulate AUTOSAR Components and Generate Code
	Configure AUTOSAR Packages
	AR-PACKAGE Structure
	Configure AUTOSAR Packages and Paths
	Control AUTOSAR Elements Affected by Package Path Modifications
	Export AUTOSAR Packages
	AR-PACKAGE Location in Exported ARXML Files

	Configure AUTOSAR Package for Component, Interface, CompuMethod, or SwAddrMethod
	Configure AUTOSAR Sender-Receiver Communication
	Configure AUTOSAR Sender-Receiver Interface
	Configure AUTOSAR Provide-Require Port
	Configure AUTOSAR Receiver Port for IsUpdated Service
	Configure AUTOSAR Sender-Receiver Data Invalidation
	Configure AUTOSAR S-R Interface Port for End-To-End Protection
	Configure AUTOSAR Receiver Port for DataReceiveErrorEvent
	Configure AUTOSAR Sender-Receiver Port ComSpecs

	Configure AUTOSAR Queued Sender-Receiver Communication
	Simulink Workflow for Modeling AUTOSAR Queued Send and Receive
	Configure AUTOSAR Sender and Receiver Components for Queued Communication
	Implement AUTOSAR Queued Send and Receive Messaging
	Configure Simulation of AUTOSAR Queued Sender-Receiver Communication
	Simulate N-to-1 AUTOSAR Queued Sender-Receiver Communication
	Simulate Event-Driven AUTOSAR Queued Sender-Receiver Communication
	Implement AUTOSAR Queued Send and Receive By Using Stateflow Messaging

	Configure AUTOSAR Ports By Using Simulink Bus Ports
	Model AUTOSAR Ports By Configuring Simulink Bus Ports
	Model AUTOSAR Interfaces By Typing Bus Ports with Bus Objects

	Configure AUTOSAR Client-Server Communication
	Configure AUTOSAR Server
	Configure AUTOSAR Client
	Configure AUTOSAR Client-Server Error Handling
	Concurrency Constraints for AUTOSAR Server Runnables
	Configure and Map AUTOSAR Server and Client Programmatically

	Configure AUTOSAR Mode-Switch Communication
	Configure Mode Receiver Port and Mode-Switch Event for Mode User
	Configure Mode Sender Port and Mode Switch Point for Application Mode Manager

	Configure AUTOSAR Nonvolatile Data Communication
	Configure AUTOSAR Port Parameters for Communication with Parameter Component
	Configure Receiver for AUTOSAR External Trigger Event Communication
	Configure AUTOSAR Runnables and Events
	Configure AUTOSAR Runnable Execution Order
	Configure AUTOSAR Initialize, Reset, or Terminate Runnables
	Add Top-Level Asynchronous Trigger to Periodic Rate-Based System
	Configure AUTOSAR Initialization Runnable (R4.1)
	Configure Disabled Mode for AUTOSAR Runnable Event
	Configure Internal Data Types for AUTOSAR IncludedDataTypeSets
	Configure AUTOSAR Per-Instance Memory
	Configure Block Signals and States as AUTOSAR Typed Per-Instance Memory
	Configure Data Stores as AUTOSAR Typed Per-Instance Memory
	Configure Data Stores to Preserve State Information at Startup and Shutdown

	Configure AUTOSAR Static Memory
	Configure Block Signals and States as AUTOSAR Static Memory
	Configure Data Stores as AUTOSAR Static Memory

	Configure AUTOSAR Constant Memory
	Configure AUTOSAR Shared or Per-Instance Parameters
	Configure Model Workspace Parameters as AUTOSAR Shared Parameters
	Configure Model Workspace Parameters as AUTOSAR Per-Instance Parameters

	Configure Variants for AUTOSAR Ports and Runnables
	Configure Variants for AUTOSAR Runnable Implementations
	Export Variation Points for AUTOSAR Calibration Data
	Configure Dimension Variants for AUTOSAR Array Sizes
	Control AUTOSAR Variants with Predefined Value Combinations
	Configure Postbuild Variant Conditions for AUTOSAR Software Components
	Configure Variant Parameter Values for AUTOSAR Elements
	Specify Variant Parameters at Precompile Time
	Specify Variant Parameters at Postbuild Time

	Configure AUTOSAR CompuMethods
	Configure AUTOSAR CompuMethod Properties
	Create AUTOSAR CompuMethods
	Configure CompuMethod Direction for Linear Functions
	Export CompuMethod Unit References
	Modify Linear Scaling for SCALE_LINEAR_AND_TEXTTABLE CompuMethod
	Configure Rational Function CompuMethod for Dual-Scaled Parameter

	Configure AUTOSAR Data Types Export
	Control Application Data Type Generation
	Configure DataTypeMappingSet Package and Name
	Initialize Data with ApplicationValueSpecification
	Configure AUTOSAR Internal Data Constraints Export

	Automatic AUTOSAR Data Type Generation
	Configure Parameters and Signals for AUTOSAR Calibration and Measurement
	Configure Subcomponent Data for AUTOSAR Calibration and Measurement
	Configure AUTOSAR Data for Calibration and Measurement
	About Software Data Definition Properties (SwDataDefProps)
	Configure SwCalibrationAccess
	Configure DisplayFormat
	Configure SwAddrMethod
	Configure SwAlignment
	Export SwImplPolicy
	Export SwRecordLayout for Lookup Table Data

	Configure Lookup Tables for AUTOSAR Calibration and Measurement
	Configure STD_AXIS Lookup Tables by Using Lookup Table Objects
	Configure COM_AXIS Lookup Tables by Using Lookup Table and Breakpoint Objects
	Configure FIX_AXIS Lookup Tables by Using Simulink Parameter Objects
	Configure Array Layout for Multidimensional Lookup Tables
	Parameterizing Instances of Reusable Referenced Model Lookup Tables and Breakpoints
	Exporting Lookup Table Constants as Record Value Specification
	Exporting AdminData Record Layout Annotations

	Configure and Map AUTOSAR Component Programmatically
	AUTOSAR Property and Map Functions
	Tree View of AUTOSAR Configuration
	Properties of AUTOSAR Elements
	Specify AUTOSAR Element Location

	AUTOSAR Property and Map Function Examples
	Configure AUTOSAR Software Component
	Configure AUTOSAR Interfaces
	Configure AUTOSAR XML Export

	Limitations and Tips
	AUTOSAR Client Block in Referenced Model

	AUTOSAR Code Generation
	Generate AUTOSAR C Code and XML Descriptions
	Configure AUTOSAR Code Generation
	Select AUTOSAR Classic Schema
	Specify Maximum SHORT-NAME Length
	Configure AUTOSAR Compiler Abstraction Macros
	Root-Level Matrix I/O
	Inspect AUTOSAR XML Options
	Generate AUTOSAR C and XML Files

	Code Generation with AUTOSAR Code Replacement Library
	Code Replacement Library for AUTOSAR Code Generation
	Find Supported AUTOSAR Library Routines
	Configure Code Generator to Use AUTOSAR 4.0 Code Replacement Library
	AUTOSAR 4.0 Library Host Code Verification
	Code Replacement Library Checks
	AUTOSAR Code Replacement Library Example for IFX/IFL Function Replacement
	Required Algorithm Property Settings for IFL/IFX Function and Block Mappings

	Verify AUTOSAR C Code with SIL and PIL
	Integrate Generated Code for Multi-Instance Software Components
	Import and Simulate AUTOSAR Code from Previous Releases
	Limitations and Tips
	Generate Code Only Check Box
	AUTOSAR Compiler Abstraction Macros (Classic Platform)
	Preservation of Bus Element Dimensions in Exported ARXML and Code
	C++11 Style Scoped Enum Classes Generated for AUTOSAR Adaptive Applications

	AUTOSAR Adaptive Software Component Modeling
	Model AUTOSAR Adaptive Software Components
	Create and Configure AUTOSAR Adaptive Software Component
	Import AUTOSAR Adaptive Software Descriptions
	Import AUTOSAR Adaptive Components to Simulink
	Import AUTOSAR Package into Adaptive Component Model
	Configure AUTOSAR Adaptive Elements and Properties
	AUTOSAR Elements Configuration Workflow
	Configure AUTOSAR Adaptive Software Components
	Configure AUTOSAR Adaptive Service Interfaces and Ports
	Configure AUTOSAR Adaptive Persistent Memory Interfaces and Ports
	Configure AUTOSAR Adaptive XML Options

	Map AUTOSAR Adaptive Elements for Code Generation
	Simulink to AUTOSAR Mapping Workflow
	Map Inports and Outports to AUTOSAR Service Ports and Events
	Map Data Stores to AUTOSAR Persistent Memory Ports and Data Elements

	Configure AUTOSAR Adaptive Software Components
	Model AUTOSAR Adaptive Service Communication
	Model Client-Server Communication

	Configure Memory Allocation for AUTOSAR Adaptive Service Data
	Configure AUTOSAR Adaptive Service Discovery Modes
	Configure AUTOSAR Adaptive Service Instance Identification
	Model AUTOSAR Adaptive Persistent Memory
	Generate AUTOSAR Adaptive C++ Code and XML Descriptions
	Configure AUTOSAR Adaptive Code Generation
	Select AUTOSAR Adaptive Schema
	Specify Maximum SHORT-NAME Length
	Specify XCP Slave Transport Layer
	Specify XCP Slave IP Address
	Specify XCP Slave Port
	Enable XCP Slave Message Verbosity
	Use Custom XCP Slave
	Inspect AUTOSAR Adaptive XML Options
	Customize Class Name and Namespace in Generated Code
	Configure Run-Time Logging Behavior
	Generate AUTOSAR Adaptive C++ and XML Files

	Configure AUTOSAR Adaptive Data for Run-Time Calibration and Measurement
	Configure XCP Communication Interface in Generated Code

	Build Library or Executable from AUTOSAR Adaptive Model
	Build Out of the Box Linux Executable from AUTOSAR Adaptive Model
	Configure Run-Time Logging for AUTOSAR Adaptive Executables
	Logging to Console
	Logging to File
	Logging to Network

	AUTOSAR Composition and ECU Software Simulation
	Import AUTOSAR Composition to Simulink
	Combine and Simulate AUTOSAR Software Components
	Import AUTOSAR Composition as Model (Classic Platform)
	Create Composition Model for Simulating AUTOSAR Components
	Alternatives for AUTOSAR System-Level Simulation

	Model AUTOSAR Basic Software Service Calls
	Configure Calls to AUTOSAR Diagnostic Event Manager Service
	Configure Calls to AUTOSAR Function Inhibition Manager Service
	Model Function Inhibition
	Scope Failures to Operation Cycles
	Control Function Availability During Failure or For Testing
	Configure Service Calls for Function Inhibition

	Configure Calls to AUTOSAR NVRAM Manager Service
	Configure AUTOSAR Basic Software Service Implementations for Simulation
	Simulate AUTOSAR Basic Software Services and Run-Time Environment
	Configure and Simulate AUTOSAR Function Inhibition Service Calls
	Simulate and Verify AUTOSAR Component Behavior by Using Diagnostic Fault Injection

	AUTOSAR Software Architecture Modeling
	Create AUTOSAR Architecture Models
	Add and Connect AUTOSAR Compositions and Components
	Add and Connect Component Blocks
	Add and Connect Composition Blocks

	Import AUTOSAR Composition from ARXML
	Import AUTOSAR Composition By Using AUTOSAR Importer App
	Import AUTOSAR Composition By Calling importFromARXML

	Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis
	Create Profiles and Stereotypes
	View Component or Composition Dependencies
	Create Custom Views for Analysis

	Link AUTOSAR Components to Simulink Requirements
	Define AUTOSAR Component Behavior by Creating or Linking Models
	Create Model Based on Block Interface
	Link to Implementation Model
	Create Model from ARXML Component Description

	Configure AUTOSAR Scheduling and Simulation
	Simulate Basic Software Service Calls
	Connect a Test Harness
	Schedule Component Runnables

	Generate and Package AUTOSAR Composition XML Descriptions and Component Code
	Configure Composition XML Options
	Export Composition XML and Component Code
	Export Composition ECU Extract

	Author AUTOSAR Compositions and Components in Architecture Model
	Import AUTOSAR Composition into Architecture Model
	Configure AUTOSAR Architecture Model Programmatically
	Manage Shared Interfaces and Data Types for AUTOSAR Architecture Models
	Create Interface Dictionary
	Design Data Types and Interfaces by Using Interface Dictionary
	Link Interface Dictionary to Architecture Model
	Apply Interfaces to Architecture Model in Simulink Environment
	Deploy Interface Dictionary
	Limitations

